← Back to Leaderboard

The AI CUDA Engineer 👷

76_conv_standard_1D_dilated_strided__conv1d_ldg_optimized_base

Level 1 • Task 76
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    dilation: int,
) -> torch.Tensor:
    """
    Performs a standard 1D convolution operation with asymmetric input and a square kernel, potentially dilated and strided.


    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        dilation (int): Dilation of the convolution.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv1d(x, weight, bias=bias, stride=stride, dilation=dilation)


class Model(nn.Module):
    """
    Performs a standard 1D convolution operation with asymmetric input and a square kernel, potentially dilated and strided.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        dilation (int): Spacing between kernel elements.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        dilation: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        conv = nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            dilation=dilation,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Performs the 1D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, length).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, length_out).
        """
        return fn(x, self.weight, self.bias, self.stride, self.dilation)


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
length = 256
stride = 3
dilation = 4
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, dilation, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 1D convolution operation with asymmetric input and a square kernel, potentially dilated and strided.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        dilation: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv1d = nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 1D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, length).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, length_out).
        """
        return self.conv1d(x)


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
length = 256
stride = 3
dilation = 4
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, dilation, bias]

Kernel Information

Related Kernels (Level 1, Task 76 • 76_conv_standard_1D_dilated_strided__)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 conv1d_warp_uniform_base_base 0.01 1.88 8.37
🥇 optimized_conv1d_base 0.01 1.88 8.37
🥇 76_conv_1d_branchless_base 0.01 1.88 8.37
🥇 76_conv_1d_branchless_edit_1 0.01 1.88 8.37
🥇 modular_conv1d_base 0.01 1.88 8.37
6 conv1d_grid_stride_base 0.01 1.65 7.32
6 conv1d_unrolled_base 0.01 1.65 7.32
6 76_conv_standard_1D_dilated_strided_optimal_block_base 0.01 1.65 7.32
6 conv1d_ldg_align_opt_base 0.01 1.65 7.32
6 76_conv_standard_1D_dilated_strided__ 0.01 1.65 7.32
6 conv1d_blocksize_512_base 0.01 1.65 7.32
6 conv1d_shared_opt_base 0.01 1.65 7.32
6 conv1d_stride_loop_opt_base 0.01 1.65 7.32
6 grid_strided_conv1d_base 0.01 1.65 7.32
6 conv1d_memory_coalesce_base 0.01 1.65 7.32
6 conv1d_stride_loop_opt_base_base 0.01 1.65 7.32
6 hybrid_conv1d_kernel_base 0.01 1.65 7.32
6 conv1d_optimized_base 0.01 1.65 7.32
6 conv1d_ldg_optimized_base 0.01 1.65 7.32
6 conv1d_strided_loop_opt_base 0.01 1.65 7.32
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Device function that performs the convolution for one output element.
// This function encapsulates boundary checking and loop unrolling.
__device__ __forceinline__ float compute_conv1d(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    int b,
    int oc,
    int o,
    int in_channels,
    int in_size,
    int kernel_size,
    int stride,
    int dilation) {
  float sum = 0.0f;
  int start_pos = o * stride;
  int end_pos = start_pos + (kernel_size - 1) * dilation;

  // If the convolution window is fully in bounds, avoid per-element boundary checks
  if (end_pos < in_size) {
    for (int ic = 0; ic < in_channels; ++ic) {
      const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size + start_pos;
      const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
      #pragma unroll
      for (int k = 0; k < kernel_size; ++k) {
        sum += __ldg(&x_ptr[k * dilation]) * __ldg(&w_ptr[k]);
      }
    }
  } else {
    // In boundary cases, check each position
    for (int ic = 0; ic < in_channels; ++ic) {
      const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size;
      const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
      #pragma unroll
      for (int k = 0; k < kernel_size; ++k) {
        int pos = start_pos + k * dilation;
        if (pos < in_size) {
          sum += __ldg(&x_ptr[pos]) * __ldg(&w_ptr[k]);
        }
      }
    }
  }
  return sum;
}

// CUDA kernel that computes the 1D convolution using the modular device function above
__global__ void conv1d_ldg_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int B,
    int in_channels,
    int in_size,
    int out_channels,
    int kernel_size,
    int out_size,
    int stride,
    int dilation) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  int total_elements = B * out_channels * out_size;
  if (idx >= total_elements) return;

  // Decode the linear index into (b, oc, o)
  int o = idx % out_size;
  int tmp = idx / out_size;
  int oc = tmp % out_channels;
  int b = tmp / out_channels;

  // Compute the convolution using the modular device function
  float sum = compute_conv1d(x, weight, b, oc, o, in_channels, in_size, kernel_size, stride, dilation);

  // Add bias if provided
  if (bias != nullptr) {
    sum += __ldg(&bias[oc]);
  }

  int out_idx = b * (out_channels * out_size) + oc * out_size + o;
  output[out_idx] = sum;
}

// Forward function exposed via pybind11
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int dilation) {
  TORCH_CHECK(x.device().is_cuda(), "x must be a CUDA tensor");
  TORCH_CHECK(weight.device().is_cuda(), "weight must be a CUDA tensor");
  TORCH_CHECK(x.is_contiguous(), "x must be contiguous");
  TORCH_CHECK(weight.is_contiguous(), "weight must be contiguous");
  TORCH_CHECK(x.dim() == 3, "x must be 3D");
  TORCH_CHECK(weight.dim() == 3, "weight must be 3D");
  TORCH_CHECK(weight.size(1) == x.size(1), "Input channels mismatch");

  if (bias.has_value()) {
    TORCH_CHECK(bias.value().device().is_cuda(), "bias must be a CUDA tensor");
    TORCH_CHECK(bias.value().is_contiguous(), "bias must be contiguous");
    TORCH_CHECK(bias.value().dim() == 1, "bias must be 1D");
    TORCH_CHECK(bias.value().size(0) == weight.size(0), "Bias size mismatch");
  }

  int B = x.size(0);
  int in_channels = x.size(1);
  int in_size = x.size(2);
  int out_channels = weight.size(0);
  int kernel_size = weight.size(2);

  int out_size = (in_size - dilation * (kernel_size - 1) - 1) / stride + 1;
  TORCH_CHECK(out_size > 0, "Invalid output size");

  auto output = torch::empty({B, out_channels, out_size}, x.options());
  if (output.numel() == 0) return output;

  const float* x_data = x.data_ptr<float>();
  const float* weight_data = weight.data_ptr<float>();
  const float* bias_data = bias.has_value() ? bias.value().data_ptr<float>() : nullptr;
  float* output_data = output.data_ptr<float>();

  int total_elements = B * out_channels * out_size;
  int threads = 256;
  int blocks = (total_elements + threads - 1) / threads;

  conv1d_ldg_kernel<<<blocks, threads>>>(
      x_data,
      weight_data,
      bias_data,
      output_data,
      B,
      in_channels,
      in_size,
      out_channels,
      kernel_size,
      out_size,
      stride,
      dilation);

  cudaError_t err = cudaGetLastError();
  TORCH_CHECK(err == cudaSuccess, "CUDA kernel launch error: ", cudaGetErrorString(err));

  return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &forward, "Optimized 1D convolution forward (CUDA) with __ldg");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.154 inst/cycle 0.000 5
Executed Ipc Elapsed 0.682 inst/cycle 0.000 5
Issue Slots Busy 29.672 % 0.130 5
Issued Ipc Active 1.188 inst/cycle 0.000 5
SM Busy 29.672 % 0.130 5
Memory Throughput 10752300450.196 byte/second 61803692559009808.000 5
Mem Busy 7.678 % 0.032 5
Max Bandwidth 5.590 % 0.015 5
L1/TEX Hit Rate 87.020 % 0.000 5
L2 Hit Rate 98.134 % 0.016 5
Mem Pipes Busy 10.436 % 0.055 5
Warp Cycles Per Issued Instruction 15.200 cycle 0.009 5
Warp Cycles Per Executed Instruction 15.656 cycle 0.009 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.190 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 28.730 % 0.150 5
Achieved Active Warps Per SM 18.388 warp 0.062 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (28.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (29.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 752866.71 μs
Device Time 6.50 μs
Self CPU Time 50.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 752816.48 μs
Device Time 6.50 μs
Self CPU Time 102.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 752588.18 μs
Device Time 0.00 μs
Self CPU Time 105.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 751801.65 μs
Device Time 0.00 μs
Self CPU Time 751801.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 500574.26 μs
Device Time 707.42 μs
Self CPU Time 500574.26 μs
Self Device Time 707.42 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv1d_ldg_kernel(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 40500.39 μs
Self CPU Time 0.00 μs
Self Device Time 40500.39 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 17793.17 μs
Device Time 122400.29 μs
Self CPU Time 17793.17 μs
Self Device Time 122400.29 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 64529.49 μs
Device Time 631146.09 μs
Self CPU Time 13123.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 51410.74 μs
Device Time 631146.09 μs
Self CPU Time 17045.06 μs
Self Device Time 631146.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 631146.09 μs
Self CPU Time 0.00 μs
Self Device Time 631146.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45303 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:8:5 bugprone-easily-swappable-parameters
8 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:8:31: note: the first parameter in the range is 'x'
8 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:9:31: note: the last parameter in the range is 'weight'
9 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:10:5: warning: 2 adjacent parameters of 'compute_conv1d' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
10 | int b,
| ^~~~~~
11 | int oc,
| ~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:10:9: note: the first parameter in the range is 'b'
10 | int b,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:11:9: note: the last parameter in the range is 'oc'
11 | int oc,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:12:5: warning: 2 adjacent parameters of 'compute_conv1d' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
12 | int o,
| ^~~~~~
13 | int in_channels,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:12:9: note: the first parameter in the range is 'o'
12 | int o,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:13:9: note: the last parameter in the range is 'in_channels'
13 | int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:14:5: warning: 3 adjacent parameters of 'compute_conv1d' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | int in_size,
| ^~~~~~~~~~~~
15 | int kernel_size,
| ~~~~~~~~~~~~~~~~
16 | int stride,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:14:9: note: the first parameter in the range is 'in_size'
14 | int in_size,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:16:9: note: the last parameter in the range is 'stride'
16 | int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:25:28: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
25 | const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size + start_pos;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:25:62: note: make conversion explicit to silence this warning
4 | const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size + start_pos;
| ^~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:25:62: note: perform multiplication in a wider type
25 | const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size + start_pos;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:26:28: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
26 | const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:26:72: note: make conversion explicit to silence this warning
26 | const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:26:72: note: perform multiplication in a wider type
26 | const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:29:23: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
29 | sum += __ldg(&x_ptr[k * dilation]) * __ldg(&w_ptr[k]);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:29:29: note: make conversion explicit to silence this warning
29 | sum += __ldg(&x_ptr[k * dilation]) * __ldg(&w_ptr[k]);
| ^~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:29:29: note: perform multiplication in a wider type
29 | sum += __ldg(&x_ptr[k * dilation]) * __ldg(&w_ptr[k]);
| ^
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:35:28: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
35 | const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:35:62: note: make conversion explicit to silence this warning
35 | const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size;
| ^~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:35:62: note: perform multiplication in a wider type
35 | const float* x_ptr = x + b * (in_channels * in_size) + ic * in_size;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:36:28: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
36 | const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:36:72: note: make conversion explicit to silence this warning
36 | const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:36:72: note: perform multiplication in a wider type
36 | const float* w_ptr = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:52:5: warning: 2 adjacent parameters of 'conv1d_ldg_kernel' of similar type ('const float *__restrict') are easily swapped by mistake [bugprone-easily-swappable-parameters]
52 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
53 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:52:31: note: the first parameter in the range is 'weight'
52 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:53:31: note: the last parameter in the range is 'bias'
53 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:55:5: warning: 2 adjacent parameters of 'conv1d_ldg_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
55 | int B,
| ^~~~~~
56 | int in_channels,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:55:9: note: the first parameter in the range is 'B'
55 | int B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:56:9: note: the last parameter in the range is 'in_channels'
56 | int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:57:5: warning: 2 adjacent parameters of 'conv1d_ldg_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
57 | int in_size,
| ^~~~~~~~~~~~
58 | int out_channels,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:57:9: note: the first parameter in the range is 'in_size'
57 | int in_size,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:58:9: note: the last parameter in the range is 'out_channels'
58 | int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:59:5: warning: 2 adjacent parameters of 'conv1d_ldg_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
59 | int kernel_size,
| ^~~~~~~~~~~~~~~~
60 | int out_size,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:59:9: note: the first parameter in the range is 'kernel_size'
59 | int kernel_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:60:9: note: the last parameter in the range is 'out_size'
60 | int out_size,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:63:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
63 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:87:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
87 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:88:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
88 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:107:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
107 | int B = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:108:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
108 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:109:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
109 | int in_size = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:110:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | int out_channels = weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b10_s1_conv1d_ldg_optimized/base/base.cu:111:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
111 | int kernel_size = weight.size(2);
| ^