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Abstract

Artificial life simulations in search of open-endedness are of-
ten based on artificial evolution. While such systems can
generate complexity, gradient-based learning remains under-
explored and may offer a complementary path to open-
endedness. We introduce Petri Dish Neural Cellular Au-
tomata (PD-NCA): a differentiable multi-agent substrate con-
sisting of a competitive population of neural cellular automata
(NCA), trained continuously as an artificial life simulation.
Differentiable PD-NCA enable end-to-end learning in a com-
petitive, multi-agent system, which we hypothesize can in-
duce open-ended complexification. Importantly, and unlike
typical NCA experiments, the models in our experiments are
continuously learning through gradient descent. Exploratory
experiments demonstrate that PD-NCA show signs of emer-
gent behavioral complexity and cooperation. More broadly,
our work introduces a new substrate where learning could po-
tentially combine with evolution to form open-ended systems.
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Introduction
The field of artificial life (ALife) has seen much focus on
evolutionary algorithms for optimization. Evolution holds
significant potential for open-endedness [7], as it is not lim-
ited by the requirement for the underlying models, substrate,
or techniques to be differentiable. That being said, recent

work in differentiable systems have shown promise for AL-
ife simulation [5, 8, 6, 1, 4].

Neural Cellular Automata (NCA) [5] are convolutional
neural networks (CNNs) that learn local update rules, us-
ing backpropagation, to yield growth-like behavior in a 2D
substrate. NCA demonstrated that backpropagation could
learn complex local update rules, but were limited in two
key ways: (1) they were single-agent-based, and (2) their
loss functions were not designed for open-ended evolution.

We introduce Petri Dish NCA (PD-NCA), a framework
that extends NCA to multi-agent scenarios where individu-
als compete for growth within a shared differentiable sub-
strate. Unlike typical NCA experiments with fixed ob-
jectives, PD-NCA have no train-test split: models are
continuously optimized throughout the simulation, making
gradient-based learning part of the dynamics itself. This
approach may prove more scalable than pure evolution, as
backpropagation can efficiently optimize millions of param-
eters and benefits from neural scaling laws [2] that predict
improved performance with increased model size.

In this paper we explore whether this combination of com-
petition and continuous learning produces emergent ALife
phenomena. We present our methods and initial evidence of
spontaneous cooperation arising between competing agents.
Our implementation is available here to enable further ex-
ploration by the ALife research community.
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Figure 1: Signs of emergent complexity in PD-NCA: (a) structured pairing of two NCA showing signs of symbiosis, (b) stable
continuous competition of several NCA, and (c) wave-like spiral patterns when using three NCA. These frames are of the
simulation are not necessarily evenly spaced, but the arrow of time is from left to right. We share multiple videos here.

https://github.com/SakanaAI/petri-dish-nca
https://sakanaai.github.io/pdnca/


Methods

Figure 2: Competition mechanism between 2 NCA: (1) Co-
sine similarity between attack and defense are summed to
form strength; (2) Strengths are passed through softmax to
create relative update weight and new aliveness distribution.

Our simulation environment is a 2D grid where multiple
NCA coexist and compete. A cell in the grid is defined by a
state vector containing C channels, partitioned into ‘attack’,
‘defense’, and hidden channels. Fig. 2 shows how the at-
tack and defense vectors interact between any two NCA. At
each timestep, the simulation proceeds through three distinct
phases: processing, competition, and state update.
Processing Each NCA is a CNN that ‘views’ a small re-
gion when proposing updates for a cell. These updates are
masked by an aliveness value, allowing only updates to alive
cells and their neighbors. Each NCA’s aliveness is stored as
a channel in the grid (hidden from the NCA). We also apply
a static environment vector to provide a constant background
update proposal, essentially bootstrapping growth and al-
lowing for ‘environmental’ changes in future work.
Competition Proposed updates are resolved through a
strength-based weighting system. At every cell, each
NCA’s strength is the sum of the cosine similarities be-
tween its attack channels and opposing defense chan-
nels. For example, consider a cell where NCAA and
NCAB both propose updates. NCAA’s strength would be
⟨attA, defB⟩+ ⟨attA, defenv⟩, while NCAB’s strength would
be ⟨attB , defA⟩ + ⟨attB , defenv⟩. Strengths are normalized
via softmax to determine each NCA’s relative contribution
to the final update.
State update The final delta ‘update’ to the grid is the sum
of the weighted proposed updates from each NCA and the
background environment vector. The aliveness channels per
cell are set to the relative strengths for each NCA. Fig. 3
shows the dominant aliveness at various snapshots through-
out simulation. Any NCA with aliveness below a threshold
has their aliveness redistributed among the remaining NCA.

NCA optimize for growth by maximizing their total alive-
ness across the grid. The result is that NCA grow outwards

while also having to compete for space. We apply the log-
arithm function to an NCA’s summed aliveness to stablize
training. The result is that each NCA tries to minimize
Li = − log(Σx,yAi(x, y)); Ai(x, y) is the NCAi’s alive-
ness at position (x, y).

Preliminary Results
We trained PD-NCAs using CNNs (up to 3 layers, 128 chan-
nels, ≈ 500K parameters), and up to 15 NCA on 256× 256
grids. Fig. 1 shows selected frames from some simulations.
Fig. 1(a) shows a simulation where structure emerges be-
tween groups of NCA (e.g., cyan-purple and blue-orange),
giving credence to the potential of PD-NCAs as an ALife
simulation. Fig. 1(b) and (c) both show patterns akin to
chemical wave propagation and oscillatory dynamics. As
further evidence, Fig. 3 shows the rise and fall of two dis-
tinct groups of NCAs.

Figure 3: Territory size dynamics showing oscillations and
cooperation between NCA pairs.

The complex dynamics of PD-NCA simulations are best
understood through video demonstrations where structures
emerge and disappear as the simulation unfolds. These dy-
namics arise because the underlying NCA are trained con-
tinuously throughout the simulation, learning to adapt in-
situ as their environment changes. This adaptive behavior
grew richer on larger grids, suggesting that scaling beyond
256× 256 grids could yield even more complex dynamics.

Extensions
We plan to integrate evolution to create a hybrid system
where learning and evolution operate simultaneously. For
example, when NCA split spatially, the fragments could be-
come independent lineages associated with their own opti-
mizers. This would effectively lift the constraint on the num-
ber of alive NCA, thus enabling both gradient-based adap-
tation and evolutionary dynamics to work in tandem. Such
a hybrid approach is designed to leverage the complemen-
tary strengths of gradient descent’s efficiency when training
CNNs and evolution’s capacity for open-ended exploration.

Beyond individual growth objectives, we plan to explore
system-wide optimization goals (e.g. compressibility) that
leverage PD-NCA’s fully differentiable architecture. Tools
like ASAL [3] could automatically discover novel substrate
parameterizations that produce even richer dynamics.

https://sakanaai.github.io/pdnca/
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