← Back to Leaderboard

The AI CUDA Engineer 👷

42_Max_Pooling_2Dmax_pool2d_combined_base

Level 1 • Task 42
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    kernel_size: int,
    stride: int,
    padding: int,
    dilation: int,
) -> torch.Tensor:
    """
    Applies Max Pooling 2D using functional interface.

    Args:
        x (torch.Tensor): Input tensor
        kernel_size (int): Size of pooling window
        stride (int): Stride of pooling window
        padding (int): Padding to be applied
        dilation (int): Spacing between kernel elements

    Returns:
        torch.Tensor: Output tensor after max pooling
    """
    return F.max_pool2d(
        x, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation
    )


class Model(nn.Module):
    """
    Simple model that performs Max Pooling 2D.
    """

    def __init__(self, kernel_size: int, stride: int, padding: int, dilation: int):
        """
        Initializes the model parameters.
        """
        super(Model, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Forward pass that calls module_fn.
        """
        return fn(
            x,
            self.kernel_size,
            self.stride,
            self.padding,
            self.dilation,
        )


batch_size = 16
channels = 32
height = 128
width = 128
kernel_size = 2
stride = 2
padding = 1
dilation = 3


def get_inputs():
    x = torch.randn(batch_size, channels, height, width)
    return [x]


def get_init_inputs():
    return [kernel_size, stride, padding, dilation]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs Max Pooling 2D.
    """
    def __init__(self, kernel_size: int, stride: int, padding: int, dilation: int):
        """
        Initializes the Max Pooling 2D layer.

        Args:
            kernel_size (int): Size of the pooling window.
            stride (int): Stride of the pooling window.
            padding (int): Padding to be applied before pooling.
            dilation (int): Spacing between kernel elements.
        """
        super(Model, self).__init__()
        self.maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies Max Pooling 2D to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).

        Returns:
            torch.Tensor: Output tensor after Max Pooling 2D, shape (batch_size, channels, pooled_height, pooled_width).
        """
        return self.maxpool(x)

batch_size = 16
channels = 32
height = 128
width = 128
kernel_size = 2
stride = 2
padding = 1
dilation = 3

def get_inputs():
    x = torch.randn(batch_size, channels, height, width)
    return [x]

def get_init_inputs():
    return [kernel_size, stride, padding, dilation]

Kernel Information

Related Kernels (Level 1, Task 42 • 42_Max_Pooling_2D)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 textured_modular_unroll_base_base 0.02 1.43 3.04
🥇 max_pool2d_optimized_strided_base 0.02 1.43 3.04
🥇 tuned_block_size_maxpool2d_base_base 0.02 1.43 3.04
🥇 modularized_unroll_base_base 0.02 1.43 3.04
🥇 fused_unroll_constmem_pool_base 0.02 1.43 3.04
🥇 base_unrolled_combo_base 0.02 1.43 3.04
🥇 warp_divergence_optimized_unroll_base 0.02 1.43 3.04
8 max_pool2d_strided_base_base 0.02 1.37 2.91
8 streams_unroll_pipelined_batch_base_base 0.02 1.37 2.91
8 optimized_max_pool2d_base 0.02 1.37 2.91
8 42_Max_Pooling_2D_manual_unroll_base 0.02 1.37 2.91
8 coalesced_1d_unroll_base_base 0.02 1.37 2.91
8 max_pool2d_kernel_manually_unrolled_base_base 0.02 1.37 2.91
8 coalesced_ldg_unrolled_base_base 0.02 1.37 2.91
8 unrolled_coalesced_maxpool_base 0.02 1.37 2.91
8 max_pool2d_combined_base 0.02 1.37 2.91
8 max_pool2d_combined_optimized_base 0.02 1.37 2.91
8 unroll_base_optimized_base 0.02 1.37 2.91
8 max_pool2d_combined_base 0.02 1.37 2.91
8 fully_unrolled_maxpool2d_base_base 0.02 1.37 2.91
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>

// Combined kernel that minimizes warp divergence by precomputing valid ranges (kernel2) and
// uses loop unrolling for common kernel sizes (kernel1) to improve performance.

template <typename scalar_t>
__global__ void max_pool2d_combined_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    const int batch_size,
    const int channels,
    const int input_height,
    const int input_width,
    const int output_height,
    const int output_width,
    const int kernel_size,
    const int stride,
    const int padding,
    const int dilation
) {
    // Use 1D indexing for all output elements
    int output_idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total_outputs = batch_size * channels * output_height * output_width;
    if (output_idx >= total_outputs) return;

    // Calculate indices for output: ow, oh, channel and batch
    int ow = output_idx % output_width;
    int oh = (output_idx / output_width) % output_height;
    int c  = (output_idx / (output_width * output_height)) % channels;
    int b  = output_idx / (output_width * output_height * channels);

    // Compute the top-left corner in the input corresponding to this output element
    int base_h = oh * stride - padding;
    int base_w = ow * stride - padding;

    // Offset to the beginning of the corresponding input channel
    int input_channel_offset = (b * channels + c) * input_height * input_width;

    scalar_t max_val = -std::numeric_limits<scalar_t>::infinity();

    // For common kernel sizes, use unrolled loops for efficiency
    if (kernel_size == 2) {
        #pragma unroll
        for (int kh = 0; kh < 2; kh++) {
            #pragma unroll
            for (int kw = 0; kw < 2; kw++) {
                int ih = base_h + kh * dilation;
                int iw = base_w + kw * dilation;
                if (ih >= 0 && ih < input_height && iw >= 0 && iw < input_width) {
                    int input_idx = input_channel_offset + ih * input_width + iw;
                    max_val = max(max_val, input[input_idx]);
                }
            }
        }
    } else if (kernel_size == 3) {
        #pragma unroll
        for (int kh = 0; kh < 3; kh++) {
            #pragma unroll
            for (int kw = 0; kw < 3; kw++) {
                int ih = base_h + kh * dilation;
                int iw = base_w + kw * dilation;
                if (ih >= 0 && ih < input_height && iw >= 0 && iw < input_width) {
                    int input_idx = input_channel_offset + ih * input_width + iw;
                    max_val = max(max_val, input[input_idx]);
                }
            }
        }
    } else {
        // Precompute valid kernel index ranges to minimize divergence
        int kh_start = 0;
        if (base_h < 0) {
            kh_start = (-base_h + dilation - 1) / dilation;
        }
        int kh_end = kernel_size;
        if (base_h + (kernel_size - 1) * dilation >= input_height) {
            int possible_end = (input_height - base_h + dilation - 1) / dilation;
            kh_end = possible_end < kernel_size ? possible_end : kernel_size;
        }

        int kw_start = 0;
        if (base_w < 0) {
            kw_start = (-base_w + dilation - 1) / dilation;
        }
        int kw_end = kernel_size;
        if (base_w + (kernel_size - 1) * dilation >= input_width) {
            int possible_end = (input_width - base_w + dilation - 1) / dilation;
            kw_end = possible_end < kernel_size ? possible_end : kernel_size;
        }

        for (int kh = kh_start; kh < kh_end; ++kh) {
            int ih = base_h + kh * dilation;
            for (int kw = kw_start; kw < kw_end; ++kw) {
                int iw = base_w + kw * dilation;
                int input_idx = input_channel_offset + ih * input_width + iw;
                max_val = max(max_val, input[input_idx]);
            }
        }
    }

    output[output_idx] = max_val;
}


// Forward function that sets up kernel launch

torch::Tensor max_pool2d_cuda_forward(
    torch::Tensor input,
    int kernel_size,
    int stride,
    int padding,
    int dilation
) {
    const auto batch_size = input.size(0);
    const auto channels = input.size(1);
    const auto input_height = input.size(2);
    const auto input_width = input.size(3);

    const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
    const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;

    auto output = torch::empty({batch_size, channels, output_height, output_width}, input.options());

    const int num_outputs = batch_size * channels * output_height * output_width;
    const int threads = 256;
    const int blocks = (num_outputs + threads - 1) / threads;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_pool2d_cuda_forward", ([&] {
        max_pool2d_combined_kernel<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            batch_size,
            channels,
            input_height,
            input_width,
            output_height,
            output_width,
            kernel_size,
            stride,
            padding,
            dilation
        );
    }));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &max_pool2d_cuda_forward, "Max Pool 2D forward (CUDA) combined kernel");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.960 inst/cycle 0.000 5
Executed Ipc Elapsed 2.622 inst/cycle 0.000 5
Issue Slots Busy 74.054 % 0.001 5
Issued Ipc Active 2.960 inst/cycle 0.000 5
SM Busy 74.774 % 0.001 5
Memory Throughput 1656518138568.348 byte/second 50291491042397331456.000 5
Mem Busy 29.664 % 0.016 5
Max Bandwidth 49.492 % 0.055 5
L1/TEX Hit Rate 47.290 % 0.000 5
L2 Hit Rate 25.076 % 0.012 5
Mem Pipes Busy 23.090 % 0.005 5
Warp Cycles Per Issued Instruction 18.402 cycle 0.000 5
Warp Cycles Per Executed Instruction 18.422 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 27.800 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 85.554 % 0.001 5
Achieved Active Warps Per SM 54.754 warp 0.001 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (55.5%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (85.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 520314.76 μs
Device Time 3320.45 μs
Self CPU Time 42.25 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 520272.51 μs
Device Time 3320.45 μs
Self CPU Time 91.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 516632.32 μs
Device Time 0.00 μs
Self CPU Time 82.11 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 516243.52 μs
Device Time 0.00 μs
Self CPU Time 516243.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 581029.53 μs
Device Time 19907.78 μs
Self CPU Time 581029.53 μs
Self Device Time 19907.78 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void max_pool2d_combined_kernel<float>(float const*, float*, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 159097.56 μs
Self CPU Time 0.00 μs
Self Device Time 159097.56 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 22938.60 μs
Device Time 39572.07 μs
Self CPU Time 22938.60 μs
Self Device Time 39572.07 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 126973.03 μs
Device Time 591763.51 μs
Self CPU Time 13575.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 113399.02 μs
Device Time 591763.51 μs
Self CPU Time 15722.14 μs
Self Device Time 591763.51 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 591841.33 μs
Self CPU Time 0.00 μs
Self Device Time 591841.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45290 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:17:5 bugprone-easily-swappable-parameters
17 | const int input_width,
| ^~~~~~~~~~~~~~~~~~~~~~
18 | const int output_height,
| ~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:17:15: note: the first parameter in the range is 'input_width'
17 | const int input_width,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:18:15: note: the last parameter in the range is 'output_height'
18 | const int output_height,
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:19:5: warning: 3 adjacent parameters of 'max_pool2d_combined_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const int output_width,
| ^~~~~~~~~~~~~~~~~~~~~~~
20 | const int kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~
21 | const int stride,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:19:15: note: the first parameter in the range is 'output_width'
19 | const int output_width,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:21:15: note: the last parameter in the range is 'stride'
21 | const int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:22:5: warning: 2 adjacent parameters of 'max_pool2d_combined_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | const int padding,
| ^~~~~~~~~~~~~~~~~~
23 | const int dilation
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:22:15: note: the first parameter in the range is 'padding'
22 | const int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:23:15: note: the last parameter in the range is 'dilation'
23 | const int dilation
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:26:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int output_idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:122:49: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
122 | const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:122:49: note: make conversion explicit to silence this warning
122 | const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:122:49: note: perform multiplication in a wider type
122 | const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:122:63: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
122 | const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:122:63: note: make conversion explicit to silence this warning
4 | const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:122:63: note: perform multiplication in a wider type
122 | const auto output_height = ((input_height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:123:47: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
123 | const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:123:47: note: make conversion explicit to silence this warning
123 | const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:123:47: note: perform multiplication in a wider type
123 | const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:123:61: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
123 | const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:123:61: note: make conversion explicit to silence this warning
123 | const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:123:61: note: perform multiplication in a wider type
123 | const auto output_width = ((input_width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride) + 1;
| ^~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:127:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | const int num_outputs = batch_size * channels * output_height * output_width;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250214_optimize_b10_s4_e0_prof_ncu/level_1/task_42/b4_s1_max_pool2d_combined/base/base.cu:131:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
131 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "max_pool2d_cuda_forward", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^