← Back to Leaderboard

The AI CUDA Engineer 👷

65_conv_transposed_2D__square_input__asymmetric_kernelgather_fused_unroll_base

Level 1 • Task 65
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    output_padding: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a transposed 2D convolution with a square input and an asymmetric kernel.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).
        weight (torch.Tensor): Weight tensor of shape (out_channels, in_channels // groups, kernel_height, kernel_width).
        bias (torch.Tensor): Bias tensor of shape (out_channels).
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        output_padding (int): Additional size added to one side of the output shape.
        groups (int): Number of blocked connections from input channels to output channels.

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
    """
    return F.conv_transpose2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a transposed 2D convolution with a square input and an asymmetric kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (tuple): Size of the convolution kernel (height, width).
        stride (int): Stride of the convolution.
        padding (int or tuple): Padding applied to the input.
        output_padding (int or tuple): Additional size added to one side of the output shape.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: tuple,
        stride: int,
        padding: int,
        output_padding: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.groups = groups
        self.output_padding = output_padding

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the transposed 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.output_padding,
            self.groups,
        )


# Constants for default arguments
stride = 1
padding = 0
output_padding = 0
groups = 1
bias = False

# Test code
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = (3, 5)  # Asymmetric kernel
width = 128
height = 128


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a transposed 2D convolution with a square input and an asymmetric kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (tuple): Size of the convolution kernel (height, width).
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int or tuple, optional): Padding applied to the input. Defaults to 0.
        output_padding (int or tuple, optional): Additional size added to one side of the output shape. Defaults to 0.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: tuple,
        stride: int = 1,
        padding: int = 0,
        output_padding: int = 0,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the transposed 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Constants for default arguments
stride = 1
padding = 0
output_padding = 0
groups = 1
bias = False

# Test code
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = (3, 5)  # Asymmetric kernel
width = 128
height = 128


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        groups,
        bias,
    ]

Kernel Information

Related Kernels (Level 1, Task 65 • 65_conv_transposed_2D__square_input__asymmetric_kernel)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// This kernel computes each output element for transposed convolution
// and manually unrolls loops to reduce loop overhead. It assumes the kernel dimensions
// (kernel_h, kernel_w) are small so that unrolling them is beneficial, and it unrolls the inner
// loop over input channels in groups of 4 when possible.

template <typename scalar_t>
__global__ void conv_transpose2d_gather_fused_unroll_kernel(
    const scalar_t* __restrict__ input,
    const scalar_t* __restrict__ weight,
    const scalar_t* __restrict__ bias, // may be nullptr
    scalar_t* __restrict__ output,
    const int batch_size,
    const int in_channels,
    const int in_height,
    const int in_width,
    const int out_channels,
    const int kernel_h,
    const int kernel_w,
    const int stride,
    const int padding,
    const int output_padding, // used only for output size computation
    const int groups,
    const int dilation,
    const int out_height,
    const int out_width
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total_elements = batch_size * out_channels * out_height * out_width;
    if (idx >= total_elements) return;

    // Unravel the flat index into 4D indices: (b, oc, oh, ow)
    int tmp = idx;
    int ow = tmp % out_width;
    tmp /= out_width;
    int oh = tmp % out_height;
    tmp /= out_height;
    int oc = tmp % out_channels;
    int b = tmp / out_channels;

    // Determine group related indices
    int out_channels_per_group = out_channels / groups;
    int g = oc / out_channels_per_group;
    int oc_group = oc % out_channels_per_group;
    int in_channels_per_group = in_channels / groups;
    int in_channel_start = g * in_channels_per_group;

    // Initialize the accumulation with bias if provided
    scalar_t sum = (bias != nullptr) ? bias[oc] : static_cast<scalar_t>(0);

    // Pre-calculate strides
    int in_image_size = in_height * in_width;

    // Loop over kernel height and width with unrolling
    #pragma unroll
    for (int kh = 0; kh < kernel_h; ++kh) {
        int h_offset = oh + padding - kh * dilation;
        if (h_offset < 0 || h_offset % stride != 0) continue;
        int h_in = h_offset / stride;
        if (h_in < 0 || h_in >= in_height) continue;

        #pragma unroll
        for (int kw = 0; kw < kernel_w; ++kw) {
            int w_offset = ow + padding - kw * dilation;
            if (w_offset < 0 || w_offset % stride != 0) continue;
            int w_in = w_offset / stride;
            if (w_in < 0 || w_in >= in_width) continue;

            int input_base = b * (in_channels * in_image_size);
            // Manual unrolling for the inner loop over input channels in groups of 4
            int unroll_end = (in_channels_per_group / 4) * 4;
            for (int ic = 0; ic < unroll_end; ic += 4) {
                int cur_ic0 = in_channel_start + ic;
                int cur_ic1 = cur_ic0 + 1;
                int cur_ic2 = cur_ic0 + 2;
                int cur_ic3 = cur_ic0 + 3;

                int input_idx0 = input_base + cur_ic0 * in_image_size + h_in * in_width + w_in;
                int input_idx1 = input_base + cur_ic1 * in_image_size + h_in * in_width + w_in;
                int input_idx2 = input_base + cur_ic2 * in_image_size + h_in * in_width + w_in;
                int input_idx3 = input_base + cur_ic3 * in_image_size + h_in * in_width + w_in;

                // Weight indexing: [in_channels, out_channels_per_group, kernel_h, kernel_w]
                int weight_idx0 = cur_ic0 * (out_channels_per_group * kernel_h * kernel_w) +
                                  oc_group * (kernel_h * kernel_w) + kh * kernel_w + kw;
                int weight_idx1 = cur_ic1 * (out_channels_per_group * kernel_h * kernel_w) +
                                  oc_group * (kernel_h * kernel_w) + kh * kernel_w + kw;
                int weight_idx2 = cur_ic2 * (out_channels_per_group * kernel_h * kernel_w) +
                                  oc_group * (kernel_h * kernel_w) + kh * kernel_w + kw;
                int weight_idx3 = cur_ic3 * (out_channels_per_group * kernel_h * kernel_w) +
                                  oc_group * (kernel_h * kernel_w) + kh * kernel_w + kw;

                sum += input[input_idx0] * weight[weight_idx0] +
                       input[input_idx1] * weight[weight_idx1] +
                       input[input_idx2] * weight[weight_idx2] +
                       input[input_idx3] * weight[weight_idx3];
            }
            // Process remaining channels if any
            for (int ic = unroll_end; ic < in_channels_per_group; ++ic) {
                int cur_ic = in_channel_start + ic;
                int input_idx = input_base + cur_ic * in_image_size + h_in * in_width + w_in;
                int weight_idx = cur_ic * (out_channels_per_group * kernel_h * kernel_w) +
                                 oc_group * (kernel_h * kernel_w) + kh * kernel_w + kw;
                sum += input[input_idx] * weight[weight_idx];
            }
        }
    }

    int output_idx = b * (out_channels * out_height * out_width) +
                     oc * (out_height * out_width) +
                     oh * out_width + ow;
    output[output_idx] = sum;
}


// Forward function: sets up output tensor and launches the unrolled kernel

torch::Tensor forward(
    torch::Tensor input,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int output_padding,
    int groups,
    int dilation = 1
) {
    TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(input.dim() == 4, "Input must be 4D");
    TORCH_CHECK(weight.dim() == 4, "Weight must be 4D");

    const int batch_size = input.size(0);
    const int in_channels = input.size(1);
    const int in_height = input.size(2);
    const int in_width = input.size(3);
    
    // Weight shape assumed: [in_channels, out_channels/groups, kernel_h, kernel_w]
    const int out_channels = weight.size(1) * groups; // weight.size(1) is out_channels per group
    const int kernel_h = weight.size(2);
    const int kernel_w = weight.size(3);

    // Calculate output dimensions using transposed convolution formula
    const int out_height = (in_height - 1) * stride - 2 * padding + dilation * (kernel_h - 1) + output_padding + 1;
    const int out_width  = (in_width - 1) * stride - 2 * padding + dilation * (kernel_w - 1) + output_padding + 1;

    auto output = torch::zeros({batch_size, out_channels, out_height, out_width}, input.options());

    const int total_elements = batch_size * out_channels * out_height * out_width;
    const int threads = 256;
    const int blocks = (total_elements + threads - 1) / threads;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "conv_transpose2d_gather_fused_unroll_cuda", ([&] {
        const scalar_t* bias_data = (bias.has_value() && bias->defined()) ? bias->data_ptr<scalar_t>() : nullptr;
        conv_transpose2d_gather_fused_unroll_kernel<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            weight.data_ptr<scalar_t>(),
            bias_data,
            output.data_ptr<scalar_t>(),
            batch_size,
            in_channels,
            in_height,
            in_width,
            out_channels,
            kernel_h,
            kernel_w,
            stride,
            padding,
            output_padding,
            groups,
            dilation,
            out_height,
            out_width
        );
    }));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused Transposed 2D Convolution with Loop Unrolling (CUDA)",
          py::arg("input"),
          py::arg("weight"),
          py::arg("bias") = py::none(),
          py::arg("stride"),
          py::arg("padding"),
          py::arg("output_padding"),
          py::arg("groups"),
          py::arg("dilation") = 1);
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.380 inst/cycle 0.000 5
Executed Ipc Elapsed 2.380 inst/cycle 0.000 5
Issue Slots Busy 59.614 % 0.000 5
Issued Ipc Active 2.380 inst/cycle 0.000 5
SM Busy 63.264 % 0.000 5
Memory Throughput 18230151333.582 byte/second 1847833836980172.000 5
Mem Busy 54.918 % 0.000 5
Max Bandwidth 54.684 % 0.000 5
L1/TEX Hit Rate 85.310 % 0.002 5
L2 Hit Rate 99.006 % 0.174 5
Mem Pipes Busy 52.074 % 0.000 5
Warp Cycles Per Issued Instruction 12.740 cycle 0.000 5
Warp Cycles Per Executed Instruction 12.740 cycle 0.000 5
Avg. Active Threads Per Warp 31.130 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.900 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 32.000 warp 0.000 5
Theoretical Occupancy 50.000 % 0.000 5
Achieved Occupancy 47.486 % 0.000 5
Achieved Active Warps Per SM 30.390 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization FMA is the highest-utilized pipeline (38.4%) based on active cycles, taking into account the rates of its different instructions. It executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy (50.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 337305.13 μs
Device Time 3394.09 μs
Self CPU Time 58.15 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 156016.49 μs
Device Time 57799.01 μs
Self CPU Time 5264.93 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 9069209.75 μs
Device Time 254083.28 μs
Self CPU Time 10727.72 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 9058484.26 μs
Device Time 254083.28 μs
Self CPU Time 15288.30 μs
Self Device Time 254083.28 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 9052712.87 μs
Device Time 9230.08 μs
Self CPU Time 9052712.87 μs
Self Device Time 9230.08 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void conv_transpose2d_gather_fused_unroll_kernel<float>(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 9745325.03 μs
Self CPU Time 0.00 μs
Self Device Time 9745325.03 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 834785.79 μs
Device Time 0.00 μs
Self CPU Time 834785.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 196284.27 μs
Self CPU Time 0.00 μs
Self Device Time 196284.27 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45328 warnings (45281 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:13:5 bugprone-easily-swappable-parameters
13 | const scalar_t* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 | const scalar_t* __restrict__ bias, // may be nullptr
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:13:34: note: the first parameter in the range is 'weight'
13 | const scalar_t* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:14:34: note: the last parameter in the range is 'bias'
14 | const scalar_t* __restrict__ bias, // may be nullptr
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:16:5: warning: 3 adjacent parameters of 'conv_transpose2d_gather_fused_unroll_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int batch_size,
| ^~~~~~~~~~~~~~~~~~~~~
17 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~~
18 | const int in_height,
| ~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:16:15: note: the first parameter in the range is 'batch_size'
16 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:18:15: note: the last parameter in the range is 'in_height'
18 | const int in_height,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:19:5: warning: 3 adjacent parameters of 'conv_transpose2d_gather_fused_unroll_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const int in_width,
| ^~~~~~~~~~~~~~~~~~~
20 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~~
21 | const int kernel_h,
| ~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:19:15: note: the first parameter in the range is 'in_width'
19 | const int in_width,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:21:15: note: the last parameter in the range is 'kernel_h'
21 | const int kernel_h,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:22:5: warning: 5 adjacent parameters of 'conv_transpose2d_gather_fused_unroll_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | const int kernel_w,
| ^~~~~~~~~~~~~~~~~~~
23 | const int stride,
| ~~~~~~~~~~~~~~~~~
24 | const int padding,
| ~~~~~~~~~~~~~~~~~~
25 | const int output_padding, // used only for output size computation
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 | const int groups,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:22:15: note: the first parameter in the range is 'kernel_w'
22 | const int kernel_w,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:26:15: note: the last parameter in the range is 'groups'
26 | const int groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:27:5: warning: 2 adjacent parameters of 'conv_transpose2d_gather_fused_unroll_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
27 | const int dilation,
| ^~~~~~~~~~~~~~~~~~~
28 | const int out_height,
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:27:15: note: the first parameter in the range is 'dilation'
27 | const int dilation,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:28:15: note: the last parameter in the range is 'out_height'
28 | const int out_height,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:31:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:136:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
136 | const int batch_size = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:137:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
137 | const int in_channels = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:138:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
138 | const int in_height = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:139:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
139 | const int in_width = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:142:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
142 | const int out_channels = weight.size(1) * groups; // weight.size(1) is out_channels per group
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:143:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
143 | const int kernel_h = weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:144:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
144 | const int kernel_w = weight.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_65/b10_s3_gather_fused_unroll/base/base.cu:156:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
156 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "conv_transpose2d_gather_fused_unroll_cuda", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^