import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
"""
Performs a cumulative sum operation.
Args:
x (torch.Tensor): Input tensor.
dim (int): The dimension along which to perform the cumulative sum.
Returns:
torch.Tensor: Output tensor.
"""
return torch.cumsum(x, dim=dim)
class Model(nn.Module):
"""
A simple model that performs a cumulative sum (prefix sum) operation along a specified dimension.
"""
def __init__(self, dim):
"""
Initialize the Scan model.
Args:
dim (int): The dimension along which to perform the cumulative sum.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x, fn=module_fn):
"""
Forward pass for the Scan model, computing the cumulative sum along the specified dimension.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, *input_shape)
fn (callable): Function to compute the output, defaults to module_fn
"""
return fn(x, self.dim)
# Define input dimensions and parameters
batch_size = 128
input_shape = (4000,) # Example shape (arbitrary)
dim = 1
def get_inputs():
"""
Generates random inputs for testing the Scan model.
Returns:
list: A list containing a single randomly generated tensor with shape
(batch_size, *input_shape).
"""
return [torch.randn(batch_size, *input_shape)]
def get_init_inputs():
"""
Returns the initialization parameters for the Scan model.
Returns:
list: A list containing the `dim` parameter for model initialization.
"""
return [dim]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
A simple model that performs a cumulative sum (prefix sum) operation along a specified dimension.
Parameters:
dim (int): The dimension along which to perform the scan operation.
"""
def __init__(self, dim):
"""
Initialize the Scan model.
Args:
dim (int): The dimension along which to perform the cumulative sum.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x):
"""
Forward pass for the Scan model, computing the cumulative sum along the specified dimension.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, *input_shape), where `*input_shape`
can vary depending on the use case.
Returns:
torch.Tensor: Tensor of the same shape as `x` after applying cumulative sum along `dim`.
"""
return torch.cumsum(x, dim=self.dim)
# Define input dimensions and parameters
batch_size = 128
input_shape = (4000,) # Example shape (arbitrary)
dim = 1
def get_inputs():
"""
Generates random inputs for testing the Scan model.
Returns:
list: A list containing a single randomly generated tensor with shape
(batch_size, *input_shape).
"""
return [torch.randn(batch_size, *input_shape)]
def get_init_inputs():
"""
Returns the initialization parameters for the Scan model.
Returns:
list: A list containing the `dim` parameter for model initialization.
"""
return [dim]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
// Threshold for switching between algorithms
#define STRIDE_THRESHOLD 128
#define INNER_SIZE_THRESHOLD 64
__global__ void cumsum_kernel_small_stride(const float* __restrict__ input,
float* output,
int outer_size,
int inner_size,
int stride) {
int outer_idx = blockIdx.x;
if (outer_idx >= outer_size) return;
for (int inner_idx = threadIdx.x; inner_idx < inner_size; inner_idx += blockDim.x) {
float sum = 0.0f;
int base = outer_idx * stride * inner_size + inner_idx;
#pragma unroll 8
for (int s = 0; s < stride; s++) {
int idx = base + s * inner_size;
sum += __ldg(&input[idx]);
output[idx] = sum;
}
}
}
__global__ void cumsum_kernel_large_stride(const float* __restrict__ input,
float* output,
int inner_size,
int stride) {
int idx = blockIdx.x;
int outer_idx = idx / inner_size;
int inner_idx = idx % inner_size;
const int warp_size = 32;
int total_segments = (stride + warp_size - 1) / warp_size;
int lane = threadIdx.x;
float warp_total = 0.0f;
unsigned mask = 0xffffffff;
for (int seg = 0; seg < total_segments; seg++) {
int s = seg * warp_size + lane;
float val = 0.0f;
if (s < stride) {
int global_idx = outer_idx * (stride * inner_size) + s * inner_size + inner_idx;
val = input[global_idx];
}
for (int offset = 1; offset < warp_size; offset *= 2) {
float n = __shfl_up_sync(mask, val, offset);
if (lane >= offset) val += n;
}
val += warp_total;
if (s < stride) {
int global_idx = outer_idx * (stride * inner_size) + s * inner_size + inner_idx;
output[global_idx] = val;
}
int valid_count = min(warp_size, stride - seg * warp_size);
warp_total = __shfl_sync(mask, val, valid_count - 1);
}
}
torch::Tensor forward(torch::Tensor x, int dim) {
CHECK_INPUT(x);
auto output = torch::empty_like(x);
int ndim = x.dim();
dim = (dim + ndim) % ndim;
int outer_size = 1;
for (int i = 0; i < dim; i++) outer_size *= x.size(i);
int inner_size = 1;
for (int i = dim + 1; i < ndim; i++) inner_size *= x.size(i);
int stride = x.size(dim);
// Choose algorithm based on tensor dimensions
if (stride <= STRIDE_THRESHOLD || inner_size >= INNER_SIZE_THRESHOLD) {
int threads = std::min(256, inner_size);
cumsum_kernel_small_stride<<<outer_size, threads>>>(
x.data_ptr<float>(), output.data_ptr<float>(),
outer_size, inner_size, stride
);
} else {
int total_blocks = outer_size * inner_size;
cumsum_kernel_large_stride<<<total_blocks, 32>>>(
x.data_ptr<float>(), output.data_ptr<float>(),
inner_size, stride
);
}
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Hybrid adaptive CUDA cumulative sum");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.080 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.070 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 1.904 | % | 0.000 | 5 |
Issued Ipc Active | 0.080 | inst/cycle | 0.000 | 5 |
SM Busy | 1.904 | % | 0.000 | 5 |
Memory Throughput | 50803249019.492 | byte/second | 30390039137126936.000 | 5 |
Mem Busy | 1.646 | % | 0.000 | 5 |
Max Bandwidth | 1.846 | % | 0.000 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 59.974 | % | 0.002 | 5 |
Mem Pipes Busy | 1.530 | % | 0.000 | 5 |
Warp Cycles Per Issued Instruction | 13.148 | cycle | 0.001 | 5 |
Warp Cycles Per Executed Instruction | 13.150 | cycle | 0.001 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 31.070 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 64.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 64.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 32.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 50.000 | % | 0.000 | 5 |
Achieved Occupancy | 1.560 | % | 0.000 | 5 |
Achieved Active Warps Per SM | 1.000 | warp | 0.000 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy (50.0%) is limited by the number of blocks that can fit on the SM. This kernel's theoretical occupancy (50.0%) is limited by the required amount of shared memory. The difference between calculated theoretical (50.0%) and measured achieved occupancy (1.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 221015.39 | μs |
Device Time | 159.20 | μs |
Self CPU Time | 34.62 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 240281.52 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 19896.65 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 736234.40 | μs |
Device Time | 21856.64 | μs |
Self CPU Time | 736234.40 | μs |
Self Device Time | 21856.64 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cumsum_kernel_large_stride(float const*, float*, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 292650.10 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 292650.10 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 17852.79 | μs |
Device Time | 42152.65 | μs |
Self CPU Time | 17852.79 | μs |
Self Device Time | 42152.65 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 251228.06 | μs |
Device Time | 623519.61 | μs |
Self CPU Time | 12192.16 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 239037.42 | μs |
Device Time | 623519.61 | μs |
Self CPU Time | 17214.22 | μs |
Self Device Time | 623519.61 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 623519.61 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 623519.61 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45290 warnings generated when compiling for host. Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.