← Back to Leaderboard

The AI CUDA Engineer 👷

98_KLDivLosswarp_block_vec4_opt_base

Level 1 • Task 98
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
    """
    Computes the Kullback-Leibler Divergence for comparing two distributions.

    Args:
        predictions (torch.Tensor): Predicted values.
        targets (torch.Tensor): Target values.

    Returns:
        torch.Tensor: Kullback-Leibler Divergence.
    """
    return F.kl_div(torch.log(predictions), targets, reduction="batchmean")


class Model(nn.Module):
    """
    A model that computes Kullback-Leibler Divergence for comparing two distributions.

    Parameters:
        None
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets, fn=module_fn):
        return fn(predictions, targets)


batch_size = 128
input_shape = (4096,)
dim = 1


def get_inputs():
    return [
        torch.randn(batch_size, *input_shape).softmax(dim=-1),
        torch.randn(batch_size, *input_shape).softmax(dim=-1),
    ]


def get_init_inputs():
    return []
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that computes Kullback-Leibler Divergence for comparing two distributions.

    Parameters:
        None
    """
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets):
        return torch.nn.functional.kl_div(torch.log(predictions), targets, reduction='batchmean')

batch_size = 128
input_shape = (4096, )
dim = 1

def get_inputs():
    return [torch.randn(batch_size, *input_shape).softmax(dim=-1), torch.randn(batch_size, *input_shape).softmax(dim=-1)]

def get_init_inputs():
    return []

Kernel Information

Related Kernels (Level 1, Task 98 • 98_KLDivLoss)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_kl_div_cuda_base 0.01 2.83 3.20
🥈 kl_div_sync_optimized_base 0.01 2.59 2.93
🥈 optimized_kl_div_kernel_base 0.01 2.59 2.93
🥈 kl_div_balanced_workload_base 0.01 2.59 2.93
🥈 kl_div_warp_reduce_base_base 0.01 2.59 2.93
🥈 optimized_kl_div_base 0.01 2.59 2.93
🥈 kl_div_modular_reduce_base_base 0.01 2.59 2.93
🥈 kldiv_optimized_stride_base_base_base 0.01 2.59 2.93
🥈 vectorized_aligned_kl_base 0.01 2.59 2.93
🥈 98_KLDivLoss_optimal_reduce_edit_1 0.01 2.59 2.93
🥈 strided_warp_kl_base_base 0.01 2.59 2.93
🥈 fast_strided_kl_base 0.01 2.59 2.93
🥈 coalesced_chunked_kl_base 0.01 2.59 2.93
🥈 kldiv_modular_per_thread_base_base 0.01 2.59 2.93
🥈 kldiv_unrolled_reduction_base_base 0.01 2.59 2.93
🥈 kl_div_unrolled_reduce_base_base 0.01 2.59 2.93
🥈 warp_block_vec4_opt_base 0.01 2.59 2.93
🥈 vectorized_kldiv_base_base 0.01 2.59 2.93
🥈 kl_div_even_workload_distribution_base 0.01 2.59 2.93
🥈 adaptive_kl_div_cuda_base 0.01 2.59 2.93
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void kl_div_kernel_optimized(
    const float* __restrict__ log_predictions,
    const float* __restrict__ targets,
    float* __restrict__ output,
    const int n) {
    
    const int tid = threadIdx.x;
    const int warp_id = tid / 32;
    const int lane = tid % 32;
    const int global_idx = blockIdx.x * blockDim.x + tid;
    
    extern __shared__ float warp_sums[];
    
    float sum = 0.0f;

    // Vector processing using float4
    const int n4 = n / 4;
    const float4* logp_vec = reinterpret_cast<const float4*>(log_predictions);
    const float4* targ_vec = reinterpret_cast<const float4*>(targets);

    int vec_idx = global_idx;
    while (vec_idx < n4) {
        float4 logp = __ldg(&logp_vec[vec_idx]);
        float4 targ = __ldg(&targ_vec[vec_idx]);
        sum += expf(logp.x) - targ.x * logp.x
             + expf(logp.y) - targ.y * logp.y
             + expf(logp.z) - targ.z * logp.z
             + expf(logp.w) - targ.w * logp.w;
        vec_idx += gridDim.x * blockDim.x;
    }

    // Scalar processing for remainder
    int scalar_idx = n4 * 4 + global_idx;
    while (scalar_idx < n) {
        float log_pred = __ldg(&log_predictions[scalar_idx]);
        float target_val = __ldg(&targets[scalar_idx]);
        sum += expf(log_pred) - target_val * log_pred;
        scalar_idx += gridDim.x * blockDim.x;
    }

    // Warp-level reduction
    for (int offset = 16; offset > 0; offset >>= 1)
        sum += __shfl_down_sync(0xffffffff, sum, offset);
    
    // Store warp sums in shared memory
    if (lane == 0)
        warp_sums[warp_id] = sum;
    __syncthreads();

    // First warp reduces final block sum
    if (warp_id == 0) {
        float val = lane < (blockDim.x / 32) ? warp_sums[lane] : 0.0f;
        for (int offset = 16; offset > 0; offset >>= 1)
            val += __shfl_down_sync(0xffffffff, val, offset);
        
        if (lane == 0)
            atomicAdd(output, val);
    }
}

torch::Tensor kl_div_cuda_forward(
    torch::Tensor log_predictions,
    torch::Tensor targets) {
    
    const int n = log_predictions.numel();
    auto output = torch::zeros({1}, log_predictions.options());
    
    const int threads = 256;
    const int warps_per_block = threads / 32;
    const int blocks = (n + threads * 4 - 1) / (threads * 4);
    const int shared_mem = warps_per_block * sizeof(float);
    
    kl_div_kernel_optimized<<<blocks, threads, shared_mem>>>(
        log_predictions.data_ptr<float>(),
        targets.data_ptr<float>(),
        output.data_ptr<float>(),
        n
    );
    
    return output / static_cast<float>(n);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &kl_div_cuda_forward, "KL divergence forward (CUDA Optimized)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.576 inst/cycle 0.000 5
Executed Ipc Elapsed 0.304 inst/cycle 0.000 5
Issue Slots Busy 15.368 % 0.283 5
Issued Ipc Active 0.616 inst/cycle 0.001 5
SM Busy 15.368 % 0.283 5
Memory Throughput 878395359700.632 byte/second 162603056759668473856.000 5
Mem Busy 15.268 % 0.045 5
Max Bandwidth 26.420 % 0.145 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 18.554 % 0.001 5
Mem Pipes Busy 7.890 % 0.015 5
Warp Cycles Per Issued Instruction 42.724 cycle 0.014 5
Warp Cycles Per Executed Instruction 45.674 cycle 0.017 5
Avg. Active Threads Per Warp 31.790 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.140 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 41.862 % 0.059 5
Achieved Active Warps Per SM 26.790 warp 0.025 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (41.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::zeros
CPU Time 4856284.04 μs
Device Time 208750.78 μs
Self CPU Time 130882.69 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 5242398.57 μs
Device Time 7166348.92 μs
Self CPU Time 325308.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 4917092.33 μs
Device Time 7166348.92 μs
Self CPU Time 372686.11 μs
Self Device Time 7166348.92 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 5268275.92 μs
Device Time 2048.69 μs
Self CPU Time 5268275.92 μs
Self Device Time 2048.69 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
kl_div_kernel_optimized(float const*, float const*, float*, int)
CPU Time 0.00 μs
Device Time 492304.85 μs
Self CPU Time 0.00 μs
Self Device Time 492304.85 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::div
CPU Time 868241.02 μs
Device Time 241274.23 μs
Self CPU Time 495239.35 μs
Self Device Time 241274.23 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 250354.78 μs
Device Time 647665.97 μs
Self CPU Time 250354.78 μs
Self Device Time 647665.97 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 6957598.14 μs
Self CPU Time 0.00 μs
Self Device Time 6957598.14 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45283 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:6:5 bugprone-easily-swappable-parameters
6 | const float* __restrict__ log_predictions,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 | const float* __restrict__ targets,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:6:31: note: the first parameter in the range is 'log_predictions'
6 | const float* __restrict__ log_predictions,
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:7:31: note: the last parameter in the range is 'targets'
7 | const float* __restrict__ targets,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:11:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
11 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:14:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
14 | const int global_idx = blockIdx.x * blockDim.x + tid;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:33:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | vec_idx += gridDim.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:42:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
42 | scalar_idx += gridDim.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:66:19: warning: the parameter 'log_predictions' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
66 | torch::Tensor log_predictions,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:67:19: warning: the parameter 'targets' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
67 | torch::Tensor targets) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250213_optimize_b10_s4_e0_sweep_rag_random/level_1/task_98/b8_s3_warp_block_vec4_opt/base/base.cu:69:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
69 | const int n = log_predictions.numel();
| ^