← Back to Leaderboard

The AI CUDA Engineer 👷

99_TripletMarginLosswarp_shfl_triplet_loss_optimized_edit_2_edit_1

Level 1 • Task 99
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    anchor: torch.Tensor, positive: torch.Tensor, negative: torch.Tensor, margin: float
) -> torch.Tensor:
    """
    Computes the Triplet Margin Loss for metric learning tasks.

    Args:
        anchor (torch.Tensor): Anchor values.
        positive (torch.Tensor): Positive values.
        negative (torch.Tensor): Negative values.
        margin (float): Margin value.

    Returns:
        torch.Tensor: Triplet Margin Loss.
    """
    return F.triplet_margin_loss(anchor, positive, negative, margin=margin)


class Model(nn.Module):
    """
    A model that computes Triplet Margin Loss for metric learning tasks.
    """

    def __init__(self, margin):
        super(Model, self).__init__()
        self.margin = margin

    def forward(self, anchor, positive, negative, fn=module_fn):
        return fn(anchor, positive, negative, self.margin)


batch_size = 128
input_shape = (4096,)
dim = 1
margin = 1.0


def get_inputs():
    return [
        torch.randn(batch_size, *input_shape),
        torch.randn(batch_size, *input_shape),
        torch.randn(batch_size, *input_shape),
    ]


def get_init_inputs():
    return [margin]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that computes Triplet Margin Loss for metric learning tasks.

    Parameters:
        margin (float): The margin between the positive and negative samples.
    """
    def __init__(self, margin=1.0):
        super(Model, self).__init__()
        self.loss_fn = torch.nn.TripletMarginLoss(margin=margin)

    def forward(self, anchor, positive, negative):
        return self.loss_fn(anchor, positive, negative)

batch_size = 128
input_shape = (4096, )
dim = 1

def get_inputs():
    return [torch.randn(batch_size, *input_shape), torch.randn(batch_size, *input_shape), torch.randn(batch_size, *input_shape)]

def get_init_inputs():
    return [1.0]  # Default margin

Kernel Information

Related Kernels (Level 1, Task 99 • 99_TripletMarginLoss)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Adjusted kernel parameters for improved performance based on hardware requirements

template <typename scalar_t>
__global__ void triplet_margin_loss_kernel(
    const scalar_t* anchor,
    const scalar_t* positive,
    const scalar_t* negative,
    scalar_t* output,
    const float margin,
    const int batch_size,
    const int feat_size) {
    
    const int tid = blockIdx.x * blockDim.x + threadIdx.x;
    const int batch_idx = tid / feat_size;
    const int feat_idx = tid % feat_size;
    const int warp_size = 32;
    const unsigned mask = 0xffffffff;
    
    if (batch_idx < batch_size && feat_idx < feat_size) {
        const int idx = batch_idx * feat_size + feat_idx;
        const scalar_t a = anchor[idx];
        const scalar_t p = positive[idx];
        const scalar_t n = negative[idx];
        
        // Compute distance components
        const scalar_t d_pos = a - p;
        const scalar_t d_neg = a - n;
        
        // Squared distances
        scalar_t dist_pos = d_pos * d_pos;
        scalar_t dist_neg = d_neg * d_neg;
        
        // Use shared memory for reduction
        __shared__ scalar_t shared_pos[512];
        __shared__ scalar_t shared_neg[512];
        
        // Initialize shared memory
        shared_pos[threadIdx.x] = dist_pos;
        shared_neg[threadIdx.x] = dist_neg;
        __syncthreads();
        
        // Parallel reduction in shared memory
        for (int stride = blockDim.x/2; stride > 0; stride >>= 1) {
            if (threadIdx.x < stride) {
                shared_pos[threadIdx.x] += shared_pos[threadIdx.x + stride];
                shared_neg[threadIdx.x] += shared_neg[threadIdx.x + stride];
            }
            __syncthreads();
        }
        
        if (feat_idx == 0) {
            // Final loss computation for this batch element
            const scalar_t loss = max(scalar_t(0.0), sqrt(dist_pos) - sqrt(dist_neg) + margin);
            output[batch_idx] = loss;
        }
    }
}

torch::Tensor triplet_margin_loss_cuda(
    torch::Tensor anchor,
    torch::Tensor positive,
    torch::Tensor negative,
    float margin) {
    
    TORCH_CHECK(anchor.device().is_cuda(), "anchor must be a CUDA tensor");
    TORCH_CHECK(positive.device().is_cuda(), "positive must be a CUDA tensor");
    TORCH_CHECK(negative.device().is_cuda(), "negative must be a CUDA tensor");
    
    const int batch_size = anchor.size(0);
    const int feat_size = anchor.size(1);
    auto output = torch::zeros({batch_size}, anchor.options());
    
    const int threads = 512;  // optimized block size
    const int blocks = (batch_size * feat_size + threads - 1) / threads;
    
    AT_DISPATCH_FLOATING_TYPES(anchor.scalar_type(), "triplet_margin_loss_kernel", ([&] {
        triplet_margin_loss_kernel<scalar_t><<<blocks, threads>>>(
            anchor.data_ptr<scalar_t>(),
            positive.data_ptr<scalar_t>(),
            negative.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            margin,
            batch_size,
            feat_size);
    }));
    
    return output.mean();
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &triplet_margin_loss_cuda, "Triplet margin loss forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.926 inst/cycle 0.000 5
Executed Ipc Elapsed 1.374 inst/cycle 0.000 5
Issue Slots Busy 48.598 % 0.190 5
Issued Ipc Active 1.942 inst/cycle 0.000 5
SM Busy 48.598 % 0.190 5
Memory Throughput 771496646710.068 byte/second 11071283447668240384.000 5
Mem Busy 14.152 % 0.003 5
Max Bandwidth 23.132 % 0.012 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 12.996 % 0.007 5
Mem Pipes Busy 33.476 % 0.020 5
Warp Cycles Per Issued Instruction 28.686 cycle 0.012 5
Warp Cycles Per Executed Instruction 28.950 cycle 0.012 5
Avg. Active Threads Per Warp 31.280 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.260 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 5.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 4.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 87.570 % 0.028 5
Achieved Active Warps Per SM 56.044 warp 0.011 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (32.3%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (87.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::zeros
CPU Time 4941889.80 μs
Device Time 199466.77 μs
Self CPU Time 144393.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 5272294.55 μs
Device Time 7174376.98 μs
Self CPU Time 290326.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 4981972.64 μs
Device Time 7174376.98 μs
Self CPU Time 365543.14 μs
Self Device Time 7174376.98 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 5345794.35 μs
Device Time 457613.34 μs
Self CPU Time 5345794.35 μs
Self Device Time 457613.34 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void triplet_margin_loss_kernel<float>(float const*, float const*, float const*, float*, float, int, int)
CPU Time 0.00 μs
Device Time 666194.34 μs
Self CPU Time 0.00 μs
Self Device Time 666194.34 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::mean
CPU Time 1117276.81 μs
Device Time 364164.85 μs
Self CPU Time 693944.93 μs
Self Device Time 364164.85 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 6974910.21 μs
Self CPU Time 0.00 μs
Self Device Time 6974910.21 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45286 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:9:5 bugprone-easily-swappable-parameters
9 | const scalar_t* anchor,
| ^~~~~~~~~~~~~~~~~~~~~~~
10 | const scalar_t* positive,
| ~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const scalar_t* negative,
| ~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:9:21: note: the first parameter in the range is 'anchor'
9 | const scalar_t* anchor,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:11:21: note: the last parameter in the range is 'negative'
11 | const scalar_t* negative,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:13:5: warning: 2 adjacent parameters of 'triplet_margin_loss_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | const float margin,
| ^~~~~~~~~~~~~~~~~~~
14 | const int batch_size,
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:13:17: note: the first parameter in the range is 'margin'
13 | const float margin,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:14:15: note: the last parameter in the range is 'batch_size'
14 | const int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:14:5: note: 'const float' and 'const int' may be implicitly converted: 'const float' (as 'float') -> 'const int' (as 'int'), 'const int' (as 'int') -> 'const float' (as 'float')
14 | const int batch_size,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:17:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | const int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:47:27: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | for (int stride = blockDim.x/2; stride > 0; stride >>= 1) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:73:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
73 | const int batch_size = anchor.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:74:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | const int feat_size = anchor.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_99/b4_s3_warp_shfl_triplet_loss_optimized_edit_2/edit_1/edit_1.cu:80:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
80 | AT_DISPATCH_FLOATING_TYPES(anchor.scalar_type(), "triplet_margin_loss_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^