← Back to Leaderboard

The AI CUDA Engineer 👷

22_Matmul_Scale_ResidualAdd_Clamp_LogSumExp_Mishfused_kernel_base

Level 2 • Task 22
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    scale_factor: float,
    clamp_min: float,
    clamp_max: float,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies matrix multiplication, scaling, residual connection, clamping, LogSumExp and Mish activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, input_size)
        scale_factor (float): Factor to scale the output by
        clamp_min (float): Minimum value for clamping
        clamp_max (float): Maximum value for clamping
        weight (torch.Tensor): Weight matrix of shape (hidden_size, input_size)
        bias (torch.Tensor): Bias vector of shape (hidden_size)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, hidden_size)
    """
    x = F.linear(x, weight, bias)
    x = x * scale_factor
    x = x + x
    x = torch.clamp(x, clamp_min, clamp_max)
    x = torch.logsumexp(x, dim=1, keepdim=True)
    x = x * F.mish(x)
    return x


class Model(nn.Module):
    """
    Model that performs a matrix multiplication, scales the result, adds a residual connection, clamps the output,
    applies LogSumExp, and finally applies the Mish activation function.
    """

    def __init__(self, input_size, hidden_size, scale_factor, clamp_min, clamp_max):
        super(Model, self).__init__()
        matmul = nn.Linear(input_size, hidden_size)
        self.weight = matmul.weight
        self.bias = nn.Parameter(
            matmul.bias + torch.ones_like(matmul.bias) * 0.02
        )  # make sure its nonzero

    def forward(self, x, scale_factor, clamp_min, clamp_max, fn=module_fn):
        return fn(x, scale_factor, clamp_min, clamp_max, self.weight, self.bias)


batch_size = 128
input_size = 512
hidden_size = 1024
scale_factor = 2.0
clamp_min = -10.0
clamp_max = 10.0


def get_inputs():
    return [torch.randn(batch_size, input_size), scale_factor, clamp_min, clamp_max]


def get_init_inputs():
    return [input_size, hidden_size, scale_factor, clamp_min, clamp_max]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a matrix multiplication, scales the result, adds a residual connection, clamps the output,
    applies LogSumExp, and finally applies the Mish activation function.
    """
    def __init__(self, input_size, hidden_size, scale_factor, clamp_min, clamp_max):
        super(Model, self).__init__()
        self.matmul = nn.Linear(input_size, hidden_size)
        self.matmul.bias = nn.Parameter(self.matmul.bias + torch.ones_like(self.matmul.bias) * 0.02)
        self.scale_factor = scale_factor
        self.clamp_min = clamp_min
        self.clamp_max = clamp_max

    def forward(self, x):
        """
        Args:
            x: Input tensor of shape (batch_size, input_size).

        Returns:
            Output tensor of shape (batch_size, hidden_size).
        """
        x = self.matmul(x)
        x = x * self.scale_factor
        x = x + x
        x = torch.clamp(x, self.clamp_min, self.clamp_max)
        x = torch.logsumexp(x, dim=1, keepdim=True)
        x = x * torch.nn.functional.mish(x)  # Mish activation
        return x

batch_size = 128
input_size = 512
hidden_size = 1024
scale_factor = 2.0
clamp_min = -10.0
clamp_max = 10.0

def get_inputs():
    return [torch.randn(batch_size, input_size)]

def get_init_inputs():
    return [input_size, hidden_size, scale_factor, clamp_min, clamp_max]

Kernel Information

Related Kernels (Level 2, Task 22 • 22_Matmul_Scale_ResidualAdd_Clamp_LogSumExp_Mish)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 22_matmul_scale_residualadd_clamp_logsumexp_mish_syncthreads_optimized_edit_1 0.03 2.19 1.49
🥇 22_matmul_scale_residualadd_clamp_logsumexp_mish_syncthreads_optimized_base 0.03 2.19 1.49
🥇 22_matmul_scale_residualadd_clamp_logsumexp_mish_even_workload_edit_1 0.03 2.19 1.49
🥇 22_matmul_scale_residualadd_clamp_logsumexp_mish_ldg_aligned_edit_1 0.03 2.19 1.49
🥇 22_matmul_scale_residualadd_clamp_logsumexp_mish_ldg_aligned_base 0.03 2.19 1.49
6 22_matmul_scale_residualadd_clamp_logsumexp_mish_warp_optimized_base 0.03 2.12 1.44
6 22_matmul_scale_residualadd_clamp_logsumexp_mish_shared_memory_warp_optimized_base 0.03 2.12 1.44
6 22_matmul_scale_residualadd_clamp_logsumexp_mish_shared_memory_warp_optimized_edit_1 0.03 2.12 1.44
6 22_matmul_scale_residualadd_clamp_logsumexp_mish_stride_loop_base 0.03 2.12 1.44
6 22_matmul_scale_residualadd_clamp_logsumexp_mish_even_workload_base 0.03 2.12 1.44
6 22_matmul_scale_residualadd_clamp_logsumexp_mish_2dindex_optimized_base 0.03 2.12 1.44
12 coalesced_fused_kernel_base_base 0.04 1.76 1.20
12 block_size_optimization_base 0.04 1.76 1.20
12 atomic_optimized_fused_kernel_base 0.04 1.76 1.20
15 reduced_sync_fused_kernel_base 0.04 1.67 1.14
16 22_matmul_scale_residualadd_clamp_logsumexp_mish_shared_memory_optimized_base 0.04 1.63 1.11
16 fused_kernel_base 0.04 1.63 1.11
16 22_matmul_scale_residualadd_clamp_logsumexp_mish_shared_memory_optimized_edit_1 0.04 1.63 1.11
19 aligned_ldg_fused_kernel_base 0.04 1.44 0.98
20 unroll_optimization_base_base 0.04 1.41 0.96
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda_runtime.h>
#include <vector>
#include <math.h>

// Define tile size for matrix multiplication tiling
#define TILE_SIZE 16

// Kernel 1: Perform tiled matrix multiplication and apply per-element transformations
// (add bias, scale, residual addition, and clamping) and write the intermediate result.
__global__ void gemm_post_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ intermediate,
    int batch_size,
    int input_size,
    int hidden_size,
    float scale_factor,
    float clamp_min,
    float clamp_max
) {
    // Shared memory tiles for input and weight
    __shared__ float input_shared[TILE_SIZE][TILE_SIZE];
    __shared__ float weight_shared[TILE_SIZE][TILE_SIZE];

    // Calculate row and column indices for the output matrix
    int row = blockIdx.y * TILE_SIZE + threadIdx.y;
    int col = blockIdx.x * TILE_SIZE + threadIdx.x;

    float sum = 0.0f;
    int num_tiles = (input_size + TILE_SIZE - 1) / TILE_SIZE;

    // Loop over tiles
    for (int t = 0; t < num_tiles; t++) {
        int input_col = t * TILE_SIZE + threadIdx.x;
        if (row < batch_size && input_col < input_size) {
            input_shared[threadIdx.y][threadIdx.x] = input[row * input_size + input_col];
        } else {
            input_shared[threadIdx.y][threadIdx.x] = 0.0f;
        }

        int weight_row = t * TILE_SIZE + threadIdx.y;
        if (col < hidden_size && weight_row < input_size) {
            // Note: weight is stored as [hidden_size, input_size], and we need its transpose for multiplication
            weight_shared[threadIdx.y][threadIdx.x] = weight[col * input_size + weight_row];
        } else {
            weight_shared[threadIdx.y][threadIdx.x] = 0.0f;
        }

        __syncthreads();

        // Multiply the two tiles together
        #pragma unroll
        for (int i = 0; i < TILE_SIZE; i++) {
            sum += input_shared[threadIdx.y][i] * weight_shared[i][threadIdx.x];
        }
        __syncthreads();
    }

    // Write back the computed value with post-operations
    if (row < batch_size && col < hidden_size) {
        sum += bias[col];          // Add bias
        sum *= scale_factor;       // Scale
        sum += sum;                // Residual addition (doubling the value)
        sum = fmaxf(fminf(sum, clamp_max), clamp_min); // Clamp between clamp_min and clamp_max
        intermediate[row * hidden_size + col] = sum;
    }
}

// Kernel 2: For each row, compute logsumexp followed by a Mish activation and final multiplication.
// This kernel performs a two-phase reduction: first to compute the maximum (for numerical stability)
// and then to compute the sum of exponentials. Finally, it computes the logsumexp and applies Mish.
__global__ void row_logsumexp_mish_kernel(
    const float* __restrict__ intermediate,
    float* __restrict__ output,
    int hidden_size,
    int batch_size
) {
    int row = blockIdx.x;  // one block per row
    if (row >= batch_size) return;

    extern __shared__ float shared_data[]; // shared memory for reduction; size = blockDim.x
    int tid = threadIdx.x;

    // First reduction: compute the maximum value in this row for numerical stability
    float max_val = -INFINITY;
    for (int i = tid; i < hidden_size; i += blockDim.x) {
        float val = intermediate[row * hidden_size + i];
        if (val > max_val)
            max_val = val;
    }
    shared_data[tid] = max_val;
    __syncthreads();

    // Reduce to get the row maximum
    for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
        if (tid < s) {
            float other = shared_data[tid + s];
            if (other > shared_data[tid])
                shared_data[tid] = other;
        }
        __syncthreads();
    }
    max_val = shared_data[0];
    __syncthreads();

    // Second reduction: compute the sum of exp(val - max_val) for the row
    float sum_exp = 0.0f;
    for (int i = tid; i < hidden_size; i += blockDim.x) {
        float val = intermediate[row * hidden_size + i];
        sum_exp += expf(val - max_val);
    }
    shared_data[tid] = sum_exp;
    __syncthreads();

    // Reduce to get the total sum of exponentials
    for (unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {
        if (tid < s) {
            shared_data[tid] += shared_data[tid + s];
        }
        __syncthreads();
    }
    sum_exp = shared_data[0];

    // Thread 0 computes the logsumexp and applies Mish activation
    if (tid == 0) {
        float lse = max_val + logf(sum_exp);
        // Compute Mish: mish(x) = x * tanh(softplus(x)) where softplus(x) = log(1+exp(x))
        float softplus = logf(1.0f + expf(lse));
        float mish_val = lse * tanhf(softplus);
        // Final output: multiply lse with mish value
        output[row] = lse * mish_val;
    }
}

// Host function that fuses the overall computation on the GPU
// 1. Launch gemm_post_kernel to perform matrix multiplication with elementwise ops.
// 2. Launch row_logsumexp_mish_kernel to compute per-row reductions (logsumexp) and apply Mish.

torch::Tensor fused_forward(
    torch::Tensor x,
    float scale_factor,
    float clamp_min,
    float clamp_max,
    torch::Tensor weight,
    torch::Tensor bias
) {
    // Dimensions
    int batch_size = x.size(0);
    int input_size = x.size(1);
    int hidden_size = weight.size(0); // weight shape: [hidden_size, input_size]

    // Allocate intermediate tensor for the output of GEMM (size [batch_size, hidden_size])
    auto options = torch::TensorOptions().dtype(x.dtype()).device(x.device());
    auto intermediate = torch::empty({batch_size, hidden_size}, options);

    // Launch gemm_post_kernel with a 2D grid and 2D block for tiled matrix multiplication
    dim3 block(TILE_SIZE, TILE_SIZE);
    int grid_x = (hidden_size + TILE_SIZE - 1) / TILE_SIZE;
    int grid_y = (batch_size + TILE_SIZE - 1) / TILE_SIZE;
    dim3 grid(grid_x, grid_y);

    gemm_post_kernel<<<grid, block>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        intermediate.data_ptr<float>(),
        batch_size,
        input_size,
        hidden_size,
        scale_factor,
        clamp_min,
        clamp_max
    );

    // Allocate output tensor to hold one value per batch (final shape: [batch_size, 1])
    auto output = torch::empty({batch_size}, options);

    // Launch row_logsumexp_mish_kernel with one block per row.
    // Use a blockDim of 256 threads and allocate shared memory accordingly.
    int threads = 256;
    int shared_mem = threads * sizeof(float);
    row_logsumexp_mish_kernel<<<batch_size, threads, shared_mem>>>(
        intermediate.data_ptr<float>(),
        output.data_ptr<float>(),
        hidden_size,
        batch_size
    );

    // Reshape the output to [batch_size, 1] to match the expected final dimensions
    return output.reshape({batch_size, 1});
}


PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &fused_forward, "Fused forward pass for module_fn (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.338 inst/cycle 0.000 5
Executed Ipc Elapsed 0.200 inst/cycle 0.000 5
Issue Slots Busy 8.538 % 0.026 5
Issued Ipc Active 0.342 inst/cycle 0.000 5
SM Busy 8.538 % 0.026 5
Memory Throughput 80676714385.724 byte/second 383907429681214144.000 5
Mem Busy 5.546 % 0.002 5
Max Bandwidth 3.056 % 0.001 5
L1/TEX Hit Rate 49.810 % 0.000 5
L2 Hit Rate 65.128 % 0.064 5
Mem Pipes Busy 4.226 % 0.001 5
Warp Cycles Per Issued Instruction 22.222 cycle 0.008 5
Warp Cycles Per Executed Instruction 22.430 cycle 0.008 5
Avg. Active Threads Per Warp 31.130 0.000 5
Avg. Not Predicated Off Threads Per Warp 25.580 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 16.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 11.994 % 0.000 5
Achieved Active Warps Per SM 7.676 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 325027.76 μs
Device Time 170.69 μs
Self CPU Time 60.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 324967.45 μs
Device Time 170.69 μs
Self CPU Time 130.41 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 324388.20 μs
Device Time 0.00 μs
Self CPU Time 134.71 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 284395.27 μs
Device Time 0.00 μs
Self CPU Time 284395.27 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 73013.61 μs
Device Time 623129.70 μs
Self CPU Time 16048.95 μs
Self Device Time 623129.70 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 569897.14 μs
Device Time 35242.64 μs
Self CPU Time 569897.14 μs
Self Device Time 35242.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
gemm_post_kernel(float const*, float const*, float const*, float*, int, int, int, float, float, float)
CPU Time 0.00 μs
Device Time 244704.63 μs
Self CPU Time 0.00 μs
Self Device Time 244704.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
row_logsumexp_mish_kernel(float const*, float*, int, int)
CPU Time 0.00 μs
Device Time 39144.75 μs
Self CPU Time 0.00 μs
Self Device Time 39144.75 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 85182.56 μs
Device Time 623129.70 μs
Self CPU Time 12183.88 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 623208.14 μs
Self CPU Time 0.00 μs
Self Device Time 623208.14 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:13:5 bugprone-easily-swappable-parameters
13 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:13:31: note: the first parameter in the range is 'input'
13 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:15:31: note: the last parameter in the range is 'bias'
15 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:19:5: warning: 3 adjacent parameters of 'gemm_post_kernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | int hidden_size,
| ^~~~~~~~~~~~~~~~
20 | float scale_factor,
| ~~~~~~~~~~~~~~~~~~~
21 | float clamp_min,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:19:9: note: the first parameter in the range is 'hidden_size'
19 | int hidden_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:21:11: note: the last parameter in the range is 'clamp_min'
21 | float clamp_min,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:20:5: note: 'int' and 'float' may be implicitly converted
20 | float scale_factor,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:29:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int row = blockIdx.y * TILE_SIZE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:30:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | int col = blockIdx.x * TILE_SIZE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:37:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int input_col = t * TILE_SIZE + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:44:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
44 | int weight_row = t * TILE_SIZE + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:78:5: warning: 2 adjacent parameters of 'row_logsumexp_mish_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
78 | int hidden_size,
| ^~~~~~~~~~~~~~~~
79 | int batch_size
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:78:9: note: the first parameter in the range is 'hidden_size'
78 | int hidden_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:79:9: note: the last parameter in the range is 'batch_size'
79 | int batch_size
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:81:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | int row = blockIdx.x; // one block per row
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:85:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
85 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:89:45: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
89 | for (int i = tid; i < hidden_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:111:45: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
111 | for (int i = tid; i < hidden_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:143:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
143 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:147:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
147 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:148:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
148 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:151:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
151 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:152:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
152 | int input_size = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:153:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
153 | int hidden_size = weight.size(0); // weight shape: [hidden_size, input_size]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_22/b8_s1_fused_kernel/base/base.cu:184:22: warning: narrowing conversion from 'unsigned long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
184 | int shared_mem = threads * sizeof(float);
| ^