← Back to Leaderboard

The AI CUDA Engineer 👷

48_Conv3d_Scaling_Tanh_Multiply_Sigmoidoptimized_hybrid_conv3d_base

Level 2 • Task 48
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    scaling_factor: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D convolution, scaling, tanh, bias multiplication and sigmoid.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        conv_weight (torch.Tensor): 3D convolution weight tensor
        conv_bias (torch.Tensor): 3D convolution bias tensor
        scaling_factor (torch.Tensor): Scaling factor tensor of shape (out_channels, 1, 1, 1)
        bias (torch.Tensor): Bias tensor of shape (out_channels, 1, 1, 1)

    Returns:
        torch.Tensor: Output tensor after applying convolution, scaling, tanh, bias and sigmoid
    """
    x = F.conv3d(x, conv_weight, bias=conv_bias)
    x = x * scaling_factor
    x = torch.tanh(x)
    x = x * bias
    x = torch.sigmoid(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D convolution, scales the output, applies tanh, multiplies by a scaling factor, and applies sigmoid.
    """

    def __init__(
        self, in_channels, out_channels, kernel_size, scaling_factor, bias_shape
    ):
        super(Model, self).__init__()
        conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.conv_weight = nn.Parameter(conv.weight)
        self.conv_bias = nn.Parameter(
            conv.bias
            + torch.randn(
                conv.bias.shape, device=conv.bias.device, dtype=conv.bias.dtype
            )
            * 0.02
        )
        self.scaling_factor = nn.Parameter(torch.randn(bias_shape) * 0.02)
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias, self.scaling_factor, self.bias)


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
scaling_factor = 2
bias_shape = (out_channels, 1, 1, 1)


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, scaling_factor, bias_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D convolution, scales the output, applies tanh, multiplies by a scaling factor, and applies sigmoid.
    """
    def __init__(self, in_channels, out_channels, kernel_size, scaling_factor, bias_shape):
        super(Model, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.randn(self.conv.bias.shape, device=self.conv.bias.device, dtype=self.conv.bias.dtype) * 0.02)
        self.scaling_factor = nn.Parameter(torch.randn(bias_shape) * 0.02)
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)

    def forward(self, x):
        x = self.conv(x)
        x = x * self.scaling_factor 
        x = torch.tanh(x)
        x = x * self.bias
        x = torch.sigmoid(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = 3
scaling_factor = 2
bias_shape = (out_channels, 1, 1, 1)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, scaling_factor, bias_shape]

Kernel Information

Related Kernels (Level 2, Task 48 • 48_Conv3d_Scaling_Tanh_Multiply_Sigmoid)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_hybrid_conv3d_base 0.78 1.29 0.68
🥈 streamlined_syncthreads_conv3d_base_edit_1 0.78 1.29 0.67
🥉 aligned_coalesced_conv3d_edit_1 0.78 1.29 0.67
🥉 aligned_memory_access_conv3d_base 0.78 1.29 0.67
🥉 streamlined_syncthreads_conv3d_base_base 0.78 1.29 0.67
6 unrolled_conv3d_opt_edit_1 0.79 1.28 0.67
7 unrolled_conv3d_opt_base 0.79 1.28 0.67
8 block_size_experimentation_edit_1 0.79 1.27 0.67
8 warp_broadcast_tile_edit_1 0.79 1.27 0.67
10 modular_device_functions_edit_1 0.79 1.27 0.67
11 block_size_experimentation_base 0.79 1.27 0.66
12 constant_mem_optimization_base 0.80 1.27 0.66
12 constant_memory_optimization_base 0.80 1.27 0.66
12 constant_mem_opt_base 0.80 1.27 0.66
12 constant_mem_optimization_edit_1 0.80 1.27 0.66
12 strided_loops_conv3d_edit_1 0.80 1.27 0.66
17 constant_memory_optimization_edit_1 0.80 1.27 0.66
18 modular_device_functions_base 0.80 1.26 0.66
18 optimized_shared_mem_edit_1 0.80 1.26 0.66
18 unroll_optimization_base 0.80 1.26 0.66
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <algorithm>

template <typename scalar_t>
__global__ void optimized_hybrid_conv3d_kernel(
    const scalar_t* __restrict__ output,
    const scalar_t* __restrict__ scaling_factor,
    const scalar_t* __restrict__ bias,
    scalar_t* __restrict__ result,
    const int batch_size,
    const int out_channels,
    const int depth,
    const int height,
    const int width) {

    const int total_elements = batch_size * out_channels * depth * height * width;
    const int whd = width * height * depth;
    
    extern __shared__ char smem[];
    scalar_t* s_scaling = reinterpret_cast<scalar_t*>(smem);
    scalar_t* s_bias = s_scaling + out_channels;

    for (int i = threadIdx.x; i < out_channels; i += blockDim.x) {
        s_scaling[i] = scaling_factor[i];
        s_bias[i] = bias[i];
    }
    __syncthreads();

    if constexpr (std::is_same<scalar_t, float>::value) {
        const int vec_size = 4;
        const int vec_total = total_elements / vec_size;
        
        auto output_vec = reinterpret_cast<const float4*>(output);
        auto result_vec = reinterpret_cast<float4*>(result);
        
        const int tid = blockIdx.x * blockDim.x + threadIdx.x;
        const int stride = blockDim.x * gridDim.x;

        #pragma unroll
        for (int i = tid; i < vec_total; i += stride) {
            float4 in_vec = __ldg(&output_vec[i]);
            float4 out_vec;
            
            #pragma unroll
            for (int j = 0; j < 4; j++) {
                int idx = i * 4 + j;
                int c_idx = (idx / whd) % out_channels;
                float val = ((float*)&in_vec)[j];
                
                val *= s_scaling[c_idx];
                val = __tanf(val);
                val *= s_bias[c_idx];
                val = __frcp_rn(1.0f + __expf(-val));
                
                ((float*)&out_vec)[j] = val;
            }
            result_vec[i] = out_vec;
        }

        for (int idx = vec_total * 4 + tid; idx < total_elements; idx += stride) {
            int c_idx = (idx / whd) % out_channels;
            float val = output[idx];
            val *= s_scaling[c_idx];
            val = __tanf(val);
            val *= s_bias[c_idx];
            val = __frcp_rn(1.0f + __expf(-val));
            result[idx] = val;
        }
    } else {
        const int tid = blockIdx.x * blockDim.x + threadIdx.x;
        const int stride = blockDim.x * gridDim.x;
        
        for (int idx = tid; idx < total_elements; idx += stride) {
            int c_idx = (idx / whd) % out_channels;
            scalar_t val = output[idx];
            val *= s_scaling[c_idx];
            val = tanh(val);
            val *= s_bias[c_idx];
            val = scalar_t(1) / (scalar_t(1) + exp(-val));
            result[idx] = val;
        }
    }
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias,
    torch::Tensor scaling_factor,
    torch::Tensor bias) {

    auto conv_out = torch::conv3d(x, conv_weight, conv_bias);
    
    const int batch_size = conv_out.size(0);
    const int out_channels = conv_out.size(1);
    const int depth = conv_out.size(2);
    const int height = conv_out.size(3);
    const int width = conv_out.size(4);
    
    auto result = torch::empty_like(conv_out);
    
    const int threads = 256;
    const int total_elements = batch_size * out_channels * depth * height * width;
    const int blocks = std::min(65535, (total_elements + threads - 1) / threads);
    
    AT_DISPATCH_FLOATING_TYPES(conv_out.scalar_type(), "optimized_hybrid_conv3d_kernel", ([&] {
        optimized_hybrid_conv3d_kernel<scalar_t><<<blocks, threads, 2 * out_channels * sizeof(scalar_t)>>>(
            conv_out.data_ptr<scalar_t>(),
            scaling_factor.data_ptr<scalar_t>(),
            bias.data_ptr<scalar_t>(),
            result.data_ptr<scalar_t>(),
            batch_size,
            out_channels,
            depth,
            height,
            width
        );
    }));

    return result;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized hybrid Conv3d forward");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.044 inst/cycle 0.000 5
Executed Ipc Elapsed 2.978 inst/cycle 0.000 5
Issue Slots Busy 76.148 % 0.020 5
Issued Ipc Active 3.046 inst/cycle 0.000 5
SM Busy 76.148 % 0.020 5
Memory Throughput 1791917178575.512 byte/second 7258385802508094464.000 5
Mem Busy 29.736 % 0.003 5
Max Bandwidth 53.474 % 0.008 5
L1/TEX Hit Rate 3.900 % 0.000 5
L2 Hit Rate 49.860 % 0.010 5
Mem Pipes Busy 38.292 % 0.011 5
Warp Cycles Per Issued Instruction 16.644 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.650 cycle 0.000 5
Avg. Active Threads Per Warp 31.680 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.730 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 79.992 % 0.042 5
Achieved Active Warps Per SM 51.194 warp 0.017 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (51.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (80.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv3d
CPU Time 607004.95 μs
Device Time 4346413.51 μs
Self CPU Time 11583.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 595421.01 μs
Device Time 4346413.51 μs
Self CPU Time 14795.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 580625.49 μs
Device Time 4346413.51 μs
Self CPU Time 30337.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 481190.23 μs
Device Time 3771982.86 μs
Self CPU Time 157566.29 μs
Self Device Time 3771982.86 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_indexed_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize32x32x8_stage3_warpsize1x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 3771981.17 μs
Self CPU Time 0.00 μs
Self Device Time 3771981.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 4161880.79 μs
Device Time 73399.42 μs
Self CPU Time 4161880.79 μs
Self Device Time 73399.42 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 626145.92 μs
Device Time 491475.71 μs
Self CPU Time 14310.93 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 611836.63 μs
Device Time 491475.71 μs
Self CPU Time 21857.38 μs
Self Device Time 491475.71 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45300 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:9:5 bugprone-easily-swappable-parameters
9 | const scalar_t* __restrict__ output,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const scalar_t* __restrict__ scaling_factor,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const scalar_t* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:9:34: note: the first parameter in the range is 'output'
9 | const scalar_t* __restrict__ output,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:11:34: note: the last parameter in the range is 'bias'
11 | const scalar_t* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:26:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | for (int i = threadIdx.x; i < out_channels; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:26:54: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | for (int i = threadIdx.x; i < out_channels; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:39:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | const int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:40:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:73:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
73 | const int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:74:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:89:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
89 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:90:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
90 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:91:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
91 | torch::Tensor conv_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~
92 | torch::Tensor scaling_factor,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:91:19: note: the first parameter in the range is 'conv_bias'
91 | torch::Tensor conv_bias,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:92:19: note: the last parameter in the range is 'scaling_factor'
92 | torch::Tensor scaling_factor,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:97:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | const int batch_size = conv_out.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:98:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | const int out_channels = conv_out.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:99:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | const int depth = conv_out.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:100:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | const int height = conv_out.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:101:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | const int width = conv_out.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:109:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
109 | AT_DISPATCH_FLOATING_TYPES(conv_out.scalar_type(), "optimized_hybrid_conv3d_kernel", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:110:69: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
110 | optimized_hybrid_conv3d_kernel<scalar_t><<<blocks, threads, 2 * out_channels * sizeof(scalar_t)>>>(
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:110:69: note: make conversion explicit to silence this warning
110 | optimized_hybrid_conv3d_kernel<scalar_t><<<blocks, threads, 2 * out_channels * sizeof(scalar_t)>>>(
| ^
| static_cast<unsigned long>(
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:66: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:44: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:56: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:70:12: note: expanded from macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
70 | return __VA_ARGS__(); \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:221:7: note: expanded from macro 'AT_DISPATCH_SWITCH'
221 | __VA_ARGS__ \
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_2/task_48/b4_s2_optimized_hybrid_conv3d/base/base.cu:110:69: note: perform multiplication in a wider type
110 | optimized_hybrid_conv3d_kernel<scalar_t><<<blocks, threads, 2 * out_channels * sizeof(scalar_t)>>>(
| ^
| static_cast<long>(
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:66: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:44: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:56: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:70:12: note: expanded from macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
70 | return __VA_ARGS__(); \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:221:7: note: expanded from macro 'AT_DISPATCH_SWITCH'
221 | __VA_ARGS__ \
| ^~~~~~~~~~~