49_ConvTranspose3d_Softmax_Sigmoid
• constant_data_fused_softmax_sigmoid_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
stride: int,
padding: int,
output_padding: int,
bias_flag: bool,
conv_transpose: torch.Tensor,
conv_transpose_bias: torch.Tensor,
) -> torch.Tensor:
"""
Applies a 3D transposed convolution operation followed by softmax and sigmoid.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W)
stride (int): Stride of the transposed convolution
padding (int): Padding of the transposed convolution
output_padding (int): Additional size added to output shape
bias_flag (bool): Whether to use bias in conv_transpose
conv_transpose (torch.Tensor): Transposed convolution weight tensor
conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
Returns:
torch.Tensor: Output tensor after applying transposed convolution, softmax and sigmoid
"""
bias = conv_transpose_bias if bias_flag else None
x = F.conv_transpose3d(
x,
conv_transpose,
bias=bias,
stride=stride,
padding=padding,
output_padding=output_padding,
)
x = F.softmax(x, dim=1)
x = torch.sigmoid(x)
return x
class Model(nn.Module):
"""
Model that performs a 3D transposed convolution, applies Softmax and Sigmoid.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
bias,
):
super(Model, self).__init__()
conv_transpose = nn.ConvTranspose3d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
bias=bias,
)
self.conv_transpose_parameter = nn.Parameter(conv_transpose.weight)
self.conv_transpose_bias = (
nn.Parameter(
conv_transpose.bias
+ torch.randn(
conv_transpose.bias.shape,
device=conv_transpose.bias.device,
dtype=conv_transpose.bias.dtype,
)
* 0.02
)
if bias
else None
)
def forward(self, x, stride, padding, output_padding, bias, fn=module_fn):
return fn(
x,
stride,
padding,
output_padding,
bias,
self.conv_transpose_parameter,
self.conv_transpose_bias,
)
batch_size = 16
in_channels = 32
out_channels = 64
D, H, W = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
bias = True
def get_inputs():
return [
torch.randn(batch_size, in_channels, D, H, W),
stride,
padding,
output_padding,
bias,
]
def get_init_inputs():
return [
in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
bias,
]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Model that performs a 3D transposed convolution, applies Softmax and Sigmoid.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, bias=True):
super(Model, self).__init__()
self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding, bias=bias)
self.conv_transpose.bias = nn.Parameter(self.conv_transpose.bias + torch.randn(self.conv_transpose.bias.shape, device=self.conv_transpose.bias.device, dtype=self.conv_transpose.bias.dtype) * 0.02) if bias else None
self.softmax = nn.Softmax(dim=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
"""
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_channels, D, H, W).
Returns:
torch.Tensor: Output tensor of shape (batch_size, out_channels, D, H, W).
"""
x = self.conv_transpose(x)
x = self.softmax(x)
x = self.sigmoid(x)
return x
batch_size = 16
in_channels = 32
out_channels = 64
D, H, W = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
def get_inputs():
return [torch.randn(batch_size, in_channels, D, H, W)]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, stride, padding, output_padding]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <math.h>
// Declare constant memory for read-only parameters
__constant__ int c_channels;
__constant__ int c_depth;
__constant__ int c_height;
__constant__ int c_width;
// CUDA kernel: each thread processes one spatial position across all channels
// using the parameters stored in constant memory
template <typename scalar_t>
__global__ void const_params_fused_softmax_sigmoid_kernel(
const scalar_t* __restrict__ input,
scalar_t* __restrict__ output,
const int batch) {
// Compute spatial dimensions from constant memory
int spatial = c_depth * c_height * c_width;
int total_pixels = batch * spatial;
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < total_pixels) {
// Determine batch and pixel index
int b = idx / spatial;
int pixel_idx = idx % spatial;
// Base offset for this batch and spatial position
int base = b * c_channels * spatial + pixel_idx;
int stride = spatial; // jump to the same spatial location in the next channel
// Online reduction: compute max and sum of exponentials for softmax
scalar_t max_val = input[base];
scalar_t sum_exp = 1.0f; // corresponds to exp(input[base] - max_val)
// Loop over channels to compute max and sum_exp
for (int c = 1; c < c_channels; c++) {
int pos = base + c * stride;
scalar_t val = input[pos];
if (val > max_val) {
sum_exp = sum_exp * exp(max_val - val) + 1.0f;
max_val = val;
} else {
sum_exp += exp(val - max_val);
}
}
// Compute softmax then apply sigmoid for each channel
for (int c = 0; c < c_channels; c++) {
int pos = base + c * stride;
scalar_t softmax_val = exp(input[pos] - max_val) / sum_exp;
output[pos] = 1.0f / (1.0f + exp(-softmax_val));
}
}
}
// Forward function: applies conv_transpose3d and then the fused CUDA kernel
// with parameters for spatial dimensions stored in constant memory
torch::Tensor forward(
torch::Tensor input,
int stride,
int padding,
int output_padding,
bool bias_flag,
torch::Tensor conv_transpose,
torch::Tensor conv_transpose_bias) {
// Perform 3D transpose convolution using PyTorch's built-in function
auto x = torch::conv_transpose3d(
input,
conv_transpose,
bias_flag ? conv_transpose_bias : torch::Tensor(),
stride,
padding,
output_padding
);
// Retrieve tensor dimensions
const int batch = x.size(0);
const int channels = x.size(1);
const int depth = x.size(2);
const int height = x.size(3);
const int width = x.size(4);
auto output = torch::empty_like(x);
// Copy read-only parameters to constant memory
cudaMemcpyToSymbol(c_channels, &channels, sizeof(int));
cudaMemcpyToSymbol(c_depth, &depth, sizeof(int));
cudaMemcpyToSymbol(c_height, &height, sizeof(int));
cudaMemcpyToSymbol(c_width, &width, sizeof(int));
int spatial = depth * height * width;
int total_pixels = batch * spatial;
int threads = 256;
int blocks = (total_pixels + threads - 1) / threads;
AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "const_params_fused_softmax_sigmoid_kernel", ([&] {
const_params_fused_softmax_sigmoid_kernel<scalar_t><<<blocks, threads>>>(
x.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
batch);
}));
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Fused ConvTranspose3d with Softmax and Sigmoid using constant memory for parameters");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 1.086 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 1.070 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 27.154 | % | 0.003 | 5 |
Issued Ipc Active | 1.086 | inst/cycle | 0.000 | 5 |
SM Busy | 39.898 | % | 0.008 | 5 |
Memory Throughput | 2962406501679.319 | byte/second | 8165896783323863040.000 | 5 |
Mem Busy | 48.304 | % | 0.002 | 5 |
Max Bandwidth | 88.374 | % | 0.007 | 5 |
L1/TEX Hit Rate | 0.190 | % | 0.000 | 5 |
L2 Hit Rate | 34.476 | % | 0.001 | 5 |
Mem Pipes Busy | 11.254 | % | 0.000 | 5 |
Warp Cycles Per Issued Instruction | 55.200 | cycle | 0.021 | 5 |
Warp Cycles Per Executed Instruction | 55.226 | cycle | 0.022 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 26.340 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 93.764 | % | 0.010 | 5 |
Achieved Active Warps Per SM | 60.010 | warp | 0.004 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
INF Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 536067.78 | μs |
Device Time | 4165.61 | μs |
Self CPU Time | 65.46 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 536002.32 | μs |
Device Time | 4165.61 | μs |
Self CPU Time | 124.33 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 542001.26 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 10811.36 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 530318.41 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 530318.41 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::conv_transpose3d | ||
CPU Time | 335357.22 | μs |
Device Time | 4683611.58 | μs |
Self CPU Time | 7338.56 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::convolution | ||
CPU Time | 328018.66 | μs |
Device Time | 4683611.58 | μs |
Self CPU Time | 10323.32 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_convolution | ||
CPU Time | 317695.34 | μs |
Device Time | 4683611.58 | μs |
Self CPU Time | 19945.91 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::cudnn_convolution_transpose | ||
CPU Time | 248066.25 | μs |
Device Time | 2878219.62 | μs |
Self CPU Time | 138857.69 | μs |
Self Device Time | 2878219.62 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaMemcpyToSymbol | ||
CPU Time | 6851481.63 | μs |
Device Time | 286346.18 | μs |
Self CPU Time | 6851481.63 | μs |
Self Device Time | 286346.18 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void const_params_fused_softmax_sigmoid_kernel<float>(float const*, float*, int) | ||
CPU Time | 0.00 | μs |
Device Time | 2082177.12 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 2082177.12 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45292 warnings generated when compiling for host. Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.