← Back to Leaderboard

The AI CUDA Engineer 👷

76_Gemm_Add_ReLUshared_warp_tile_kernel_base

Level 2 • Task 76
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Performs matrix multiplication, adds bias, and applies ReLU activation.

    Args:
        x (torch.Tensor): Input tensor with shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix with shape (out_features, in_features)
        bias (torch.Tensor): Bias tensor with shape (out_features,)

    Returns:
        torch.Tensor: Output tensor with shape (batch_size, out_features)
    """
    x = F.linear(x, weight)
    x = x + bias
    x = F.relu(x)
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, adds a bias term, and applies ReLU.
    """

    def __init__(self, in_features, out_features, bias_shape):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features, bias=False)
        self.weight = nn.Parameter(gemm.weight)
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias)


batch_size = 128
in_features = 1024
out_features = 512
bias_shape = (out_features,)


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features, bias_shape]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, adds a bias term, and applies ReLU.
    """
    def __init__(self, in_features, out_features, bias_shape):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features, bias=False)
        self.bias = nn.Parameter(torch.randn(bias_shape)*0.02)

    def forward(self, x):   
        """
        Args:
            x (torch.Tensor): Input tensor with shape (batch_size, in_features).
        Returns:
            torch.Tensor: Output tensor with shape (batch_size, out_features).
        """
        x = self.gemm(x)
        x = x + self.bias
        x = torch.relu(x)
        return x

batch_size = 128
in_features = 1024
out_features = 512
bias_shape = (out_features,)

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, bias_shape]

Kernel Information

Related Kernels (Level 2, Task 76 • 76_Gemm_Add_ReLU)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 shared_warp_tile_kernel_base 0.03 0.93 1.54
🥇 combined_warp_tile_base 0.03 0.93 1.54
🥉 optimized_block_size_kernel_base 0.03 0.89 1.49
4 warp_tile_ldg_base 0.03 0.87 1.44
4 even_workload_dist_base_base 0.03 0.87 1.44
4 hybrid_warp_tile_kernel_base 0.03 0.87 1.44
4 warp_tile_hybrid_base 0.03 0.87 1.44
8 warp_tile_ldg_opt_base 0.03 0.81 1.36
8 warp_reduction_optimized_base_base 0.03 0.81 1.36
10 optimized_shared_memory_base_base 0.03 0.79 1.32
10 warp_tile_base_base 0.03 0.79 1.32
12 hybrid_optimized_kernel_base 0.04 0.77 1.28
13 warp_reduction_gemm_base 0.04 0.71 1.18
13 warp_tile_aligned_base_base 0.04 0.71 1.18
15 vectorized_warp_unroll_base_base 0.04 0.69 1.15
15 vectorized_warp_unroll_base_edit_1 0.04 0.69 1.15
15 warp_reduction_unrolled_gemm_edit_1 0.04 0.69 1.15
18 unrolled_warp_gemm_edit_1 0.04 0.67 1.12
18 unrolled_warp_gemm_base 0.04 0.67 1.12
18 vectorized_warp_reduction_base 0.04 0.67 1.12
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <c10/cuda/CUDAGuard.h>

#define WARP_SIZE 32
#define TILE_SIZE 4  // Each warp processes TILE_SIZE output features concurrently

// This kernel leverages shared memory to load the input vector for a given batch sample,
// reducing global memory accesses and latency. Threads in each block cooperatively load
// the current input row into shared memory. Then, using warp-level tiling and vectorized
// memory accesses (via float4), each warp computes dot products with multiple weight rows.
// Warp shuffles are used to perform intra-warp reductions. Bias is added and ReLU is applied
// before writing the output.

__global__ void shared_warp_tile_kernel(const float* __restrict__ x,
                                          const float* __restrict__ weight,
                                          const float* __restrict__ bias,
                                          float* __restrict__ out,
                                          int in_features,
                                          int out_features) {
    // Each block processes one batch sample (blockIdx.x) and a group of output features (blockIdx.y)
    int batch_idx = blockIdx.x;

    // Allocate shared memory for the input row
    extern __shared__ float s_x[];
    int tid = threadIdx.x;
    int block_size = blockDim.x;

    // Cooperatively load the entire input row into shared memory
    for (int i = tid; i < in_features; i += block_size) {
        s_x[i] = x[batch_idx * in_features + i];
    }
    __syncthreads();

    // Determine warp and lane indices
    int warps_per_block = block_size / WARP_SIZE;
    int warp_id = tid / WARP_SIZE;
    int lane_id = tid % WARP_SIZE;

    // Each warp computes a tile of TILE_SIZE consecutive output features
    int base_out_group = blockIdx.y * (warps_per_block * TILE_SIZE);
    int out_base = base_out_group + warp_id * TILE_SIZE;
    if (out_base >= out_features) return;

    // Accumulators for the dot product results for each output in the tile
    float sums[TILE_SIZE] = {0.0f, 0.0f, 0.0f, 0.0f};

    // Set up vectorized loads parameters
    int nvec = in_features / 4;  // number of groups of 4 floats
    int rem = in_features % 4;     // any leftovers

    // Reinterpret the shared memory as float4 pointer for vectorized loads
    float4* s_x_vec = reinterpret_cast<float4*>(s_x);

    // Loop over each output inside the tile
    for (int t = 0; t < TILE_SIZE; t++) {
        int current_out = out_base + t;
        if (current_out < out_features) {
            // Pointer to the corresponding weight row
            const float* w_row = weight + current_out * in_features;
            const float4* w_row_vec = reinterpret_cast<const float4*>(w_row);
            float sum = 0.0f;
            
            // Vectorized dot product: each thread processes a strided section
            for (int k = lane_id; k < nvec; k += WARP_SIZE) {
                float4 x_val = s_x_vec[k];  // read from shared memory (faster than global)
                float4 w_val = __ldg(w_row_vec + k);
                sum += x_val.x * w_val.x + x_val.y * w_val.y + x_val.z * w_val.z + x_val.w * w_val.w;
            }
            
            // Process remaining elements with scalar loads
            int offset = nvec * 4;
            for (int k = lane_id; k < rem; k += WARP_SIZE) {
                sum += s_x[offset + k] * __ldg(w_row + offset + k);
            }
            
            sums[t] = sum;
        }
    }

    // Perform warp-level reduction using shuffle instructions
    for (int t = 0; t < TILE_SIZE; t++) {
        for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
            sums[t] += __shfl_down_sync(0xffffffff, sums[t], offset);
        }
    }

    // The first lane in the warp writes the final output with bias and ReLU activation
    if (lane_id == 0) {
        for (int t = 0; t < TILE_SIZE; t++) {
            int current_out = out_base + t;
            if (current_out < out_features) {
                float result = sums[t] + __ldg(bias + current_out);
                out[batch_idx * out_features + current_out] = (result > 0.0f) ? result : 0.0f;
            }
        }
    }
}

// Host launcher function
// Grid dimensions: grid.x spans the batch dimension, grid.y spans groups of output features
// Block dimensions: each block contains multiple warps, with each warp computing TILE_SIZE outputs
// The dynamic shared memory size is set to (in_features * sizeof(float))

torch::Tensor shared_warp_tile_forward(torch::Tensor x,
                                         torch::Tensor weight,
                                         torch::Tensor bias) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.is_cuda(), "bias must be a CUDA tensor");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = weight.size(0);

    auto out = torch::empty({batch_size, out_features}, x.options());

    // Tunable parameter: number of warps per block
    int warps_per_block = 8;
    int threads_per_block = warps_per_block * WARP_SIZE;

    // Compute grid dimension over the output features
    int blocks_y = (out_features + (warps_per_block * TILE_SIZE) - 1) / (warps_per_block * TILE_SIZE);
    
    dim3 grid(batch_size, blocks_y);
    dim3 block(threads_per_block);

    // Allocate shared memory to hold one entire input row
    size_t shared_mem_size = in_features * sizeof(float);

    cudaStream_t stream = c10::cuda::getCurrentCUDAStream();
    shared_warp_tile_kernel<<<grid, block, shared_mem_size, stream>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        out.data_ptr<float>(),
        in_features,
        out_features
    );

    return out;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &shared_warp_tile_forward, "GEMM with bias and ReLU using shared memory for input vector (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.658 inst/cycle 0.000 5
Executed Ipc Elapsed 1.480 inst/cycle 0.000 5
Issue Slots Busy 41.464 % 0.006 5
Issued Ipc Active 1.658 inst/cycle 0.000 5
SM Busy 41.464 % 0.006 5
Memory Throughput 85662353124.662 byte/second 225757483080286656.000 5
Mem Busy 75.880 % 0.193 5
Max Bandwidth 73.302 % 0.187 5
L1/TEX Hit Rate 14.500 % 0.100 5
L2 Hit Rate 93.244 % 2.711 5
Mem Pipes Busy 25.978 % 0.024 5
Warp Cycles Per Issued Instruction 25.240 cycle 0.005 5
Warp Cycles Per Executed Instruction 25.262 cycle 0.005 5
Avg. Active Threads Per Warp 30.490 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.210 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 65.298 % 0.021 5
Achieved Active Warps Per SM 41.790 warp 0.009 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (22.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 890303.11 μs
Device Time 205.85 μs
Self CPU Time 65.01 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 890238.10 μs
Device Time 205.85 μs
Self CPU Time 126.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 889560.34 μs
Device Time 0.00 μs
Self CPU Time 149.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 883115.41 μs
Device Time 0.00 μs
Self CPU Time 883115.41 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 258503.74 μs
Device Time 391.17 μs
Self CPU Time 258503.74 μs
Self Device Time 391.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
shared_warp_tile_kernel(float const*, float const*, float const*, float*, int, int)
CPU Time 0.00 μs
Device Time 92287.19 μs
Self CPU Time 0.00 μs
Self Device Time 92287.19 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 78907.38 μs
Device Time 279221.34 μs
Self CPU Time 8029.71 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 70878.79 μs
Device Time 279221.34 μs
Self CPU Time 7930.67 μs
Self Device Time 279221.34 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 279221.34 μs
Self CPU Time 0.00 μs
Self Device Time 279221.34 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45313 warnings generated when compiling for host.
Suppressed 45347 warnings (45300 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:16:41 bugprone-easily-swappable-parameters
16 | __global__ void shared_warp_tile_kernel(const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
17 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:16:67: note: the first parameter in the range is 'x'
16 | __global__ void shared_warp_tile_kernel(const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:18:69: note: the last parameter in the range is 'bias'
18 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:20:43: warning: 2 adjacent parameters of 'shared_warp_tile_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
20 | int in_features,
| ^~~~~~~~~~~~~~~~
21 | int out_features) {
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:20:47: note: the first parameter in the range is 'in_features'
20 | int in_features,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:21:47: note: the last parameter in the range is 'out_features'
21 | int out_features) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:23:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int batch_idx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:27:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:28:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int block_size = blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:42:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
42 | int base_out_group = blockIdx.y * (warps_per_block * TILE_SIZE);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:61:34: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
61 | const float* w_row = weight + current_out * in_features;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:61:43: note: make conversion explicit to silence this warning
5 | const float* w_row = weight + current_out * in_features;
| ^~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:61:43: note: perform multiplication in a wider type
61 | const float* w_row = weight + current_out * in_features;
| ^~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:106:54: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
106 | torch::Tensor shared_warp_tile_forward(torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:107:56: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
107 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:108:56: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
108 | torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:113:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
113 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:114:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
114 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_76/b10_s2_shared_warp_tile_kernel/base/base.cu:115:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
115 | int out_features = weight.size(0);
| ^