← Back to Leaderboard

The AI CUDA Engineer 👷

8_Conv3d_Divide_Max_GlobalAvgPool_BiasAdd_Sumfused_pooling_uniform_base

Level 2 • Task 8
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    divisor: float,
    pool_size: tuple,
    sum_dim: int,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies 3D convolution, division, max pooling, global average pooling, bias addition and sum.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        divisor (float): Constant to divide by
        pool_size (tuple): Size for max pooling (depth, height, width)
        sum_dim (int): Dimension to sum over
        conv_weight (torch.Tensor): 3D convolution weights
        conv_bias (torch.Tensor): 3D convolution bias
        bias (torch.Tensor): Bias tensor for addition

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    x = F.conv3d(x, conv_weight, bias=conv_bias)
    x = x / divisor
    x = F.max_pool3d(x, pool_size)
    x = F.adaptive_avg_pool3d(x, (1, 1, 1))
    x = x + bias
    x = torch.sum(x, dim=sum_dim)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D convolution, divides by a constant, applies max pooling,
    global average pooling, adds a bias term, and sums along a specific dimension.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        divisor,
        pool_size,
        bias_shape,
        sum_dim,
    ):
        super(Model, self).__init__()
        conv_shape = (out_channels, in_channels, *kernel_size)
        conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)

        self.conv_weight = conv.weight
        self.conv_bias = conv.bias
        self.bias = self.bias

    def forward(self, x, fn=module_fn):
        return fn(
            x, divisor, pool_size, sum_dim, self.conv_weight, self.conv_bias, self.bias
        )


batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = (3, 3, 3)
divisor = 2.0
pool_size = (2, 2, 2)
bias_shape = (out_channels, 1, 1, 1)
sum_dim = 1


def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        divisor,
        pool_size,
        bias_shape,
        sum_dim,
    ]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D convolution, divides by a constant, applies max pooling,
    global average pooling, adds a bias term, and sums along a specific dimension.
    """
    def __init__(self, in_channels, out_channels, kernel_size, divisor, pool_size, bias_shape, sum_dim):
        super(Model, self).__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, kernel_size)
        self.divisor = divisor
        self.max_pool = nn.MaxPool3d(pool_size)
        self.global_avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
        self.bias = nn.Parameter(torch.randn(bias_shape) * 0.02)
        self.sum_dim = sum_dim

    def forward(self, x):
        x = self.conv(x)
        x = x / self.divisor
        x = self.max_pool(x)
        x = self.global_avg_pool(x)
        x = x + self.bias
        x = torch.sum(x, dim=self.sum_dim)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
depth, height, width = 16, 32, 32
kernel_size = (3, 3, 3)
divisor = 2.0
pool_size = (2, 2, 2)
bias_shape = (out_channels, 1, 1, 1)
sum_dim = 1

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, divisor, pool_size, bias_shape, sum_dim]

Kernel Information

Related Kernels (Level 2, Task 8 • 8_Conv3d_Divide_Max_GlobalAvgPool_BiasAdd_Sum)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 fused_stride_loops_base 0.75 1.21 0.91
🥇 fused_pooling_warp_uniform_base 0.75 1.21 0.91
🥇 fused_divide_maxpool_avg_base 0.75 1.21 0.91
🥇 fused_divide_maxpool_avg_edit_1 0.75 1.21 0.91
5 fused_stride_loops_edit_1 0.75 1.21 0.91
5 fused_pooling_warp_uniform_edit_1 0.75 1.21 0.91
5 fused_stride_loops_base 0.75 1.21 0.91
8 block_size_tuned_base_base 0.75 1.20 0.91
8 fused_stride_loops_edit_1 0.75 1.20 0.91
10 fused_pooling_shared_memory_base 0.75 1.20 0.91
10 optimized_stride_boundary_base_base 0.75 1.20 0.91
10 fused_pooling_min_sync_base 0.75 1.20 0.91
13 fused_pooling_min_sync_opt_base 0.75 1.20 0.91
14 fused_pooling_opt_sync_edit_1 0.76 1.19 0.90
15 fused_pooling_uniform_edit_1 0.76 1.19 0.90
15 fused_pooling_uniform_base 0.76 1.19 0.90
15 fused_pooling_opt_sync_base 0.76 1.19 0.90
18 fused_pooling_stride_boundaries_base 0.76 1.19 0.90
18 fused_pooling_unroll_edit_1 0.76 1.19 0.90
20 fused_pooling_unroll_base 0.76 1.19 0.90
#include <torch/extension.h>
#include <vector>
#include <cfloat>
#include <cuda_runtime.h>

// This kernel assumes that D, H, and W are exactly divisible by the corresponding pool sizes to avoid boundary checks.
// It uses fmaxf to compute the maximum value without divergent branching and precomputes the inverse of divisor to fuse division.
// Warp-level reduction with __shfl_down_sync is used to aggregate results uniformly and minimize warp divergence.

__global__ void fusedPoolingAndReductionKernel(
    const float* __restrict__ conv_out,  // (N, C, D, H, W)
    int N,
    int C,
    int D,
    int H,
    int W,
    int poolD,
    int poolH,
    int poolW,
    const float* __restrict__ bias,      // (C)
    int sum_dim,                         // if 1, reduce across channels
    float* __restrict__ output,          // if sum_dim==1, shape (N), else (N, C)
    float divisor
) {
    // Identify (n, c) slice by flattening blockIdx.x
    int nc = blockIdx.x;  // in [0, N*C)
    int n = nc / C;
    int c = nc % C;

    // Compute output sizes for pooling
    int outD = D / poolD;
    int outH = H / poolH;
    int outW = W / poolW;
    int numPools = outD * outH * outW;

    const float invDiv = 1.0f / divisor;  // Precompute inverse divisor
    float thread_sum = 0.0f;

    // Each thread processes multiple pooling windows in a strided loop with no divergent bounds
    for (int idx = threadIdx.x; idx < numPools; idx += blockDim.x) {
        int d = idx / (outH * outW);
        int rem = idx % (outH * outW);
        int h = rem / outW;
        int w = rem % outW;

        int startD = d * poolD;
        int startH = h * poolH;
        int startW = w * poolW;

        float max_val = -FLT_MAX;
        // Loop over pooling window; no boundary checks due to exact divisibility
        for (int pd = 0; pd < poolD; pd++) {
            for (int ph = 0; ph < poolH; ph++) {
                for (int pw = 0; pw < poolW; pw++) {
                    int curD = startD + pd;
                    int curH = startH + ph;
                    int curW = startW + pw;
                    int index = (((n * C + c) * D + curD) * H + curH) * W + curW;
                    // Fuse division via multiplication with invDiv
                    float val = conv_out[index] * invDiv;
                    max_val = fmaxf(max_val, val);
                }
            }
        }
        thread_sum += max_val;
    }

    // Intra-warp reduction without divergent branching
    unsigned int lane = threadIdx.x & 31;
    float sum_val = thread_sum;
    for (int offset = 16; offset > 0; offset /= 2) {
        sum_val += __shfl_down_sync(0xFFFFFFFF, sum_val, offset);
    }

    // Shared memory for inter-warp reduction
    extern __shared__ float shared[];
    if (lane == 0) {
        shared[threadIdx.x >> 5] = sum_val;
    }
    __syncthreads();

    float block_sum = 0.0f;
    int numWarps = (blockDim.x + 31) >> 5;
    if (threadIdx.x < numWarps) {
        block_sum = shared[threadIdx.x];
    }
    if (threadIdx.x < 32) {
        for (int offset = 16; offset > 0; offset /= 2) {
            block_sum += __shfl_down_sync(0xFFFFFFFF, block_sum, offset);
        }
    }

    // Final result: compute average and add bias in uniform control flow
    if (threadIdx.x == 0) {
        float avg = block_sum / numPools;
        avg = avg + bias[c];
        // Write either per (n,c) element or atomically reduce over channels
        if (sum_dim == 1) {
            atomicAdd(&output[n], avg);
        } else {
            output[n * C + c] = avg;
        }
    }
}

// Forward function: performs conv3d using cuDNN then the fused pooling and reduction

torch::Tensor forward_cuda(
    torch::Tensor x,
    double divisor,
    std::vector<int64_t> pool_size,  // pool_size: [poolD, poolH, poolW]
    int64_t sum_dim,
    torch::Tensor conv_weight,
    torch::Tensor conv_bias,
    torch::Tensor bias
) {
    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor.");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor.");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor.");
    TORCH_CHECK(bias.is_cuda(), "bias must be a CUDA tensor.");

    // Use PyTorch's optimized conv3d (cuDNN) without fusion
    auto conv_out = at::conv3d(x, conv_weight, conv_bias);
    int N = conv_out.size(0);
    int C = conv_out.size(1);
    int D = conv_out.size(2);
    int H = conv_out.size(3);
    int W = conv_out.size(4);

    // Launch configuration: each block handles one (n, c) slice
    int totalBlocks = N * C;
    int threadsPerBlock = 128;
    int sharedMemSize = ((threadsPerBlock + 31) / 32) * sizeof(float);

    torch::Tensor output;
    if (sum_dim == 1) {
        // Sum over channel dimension, output shape: (N)
        output = torch::zeros({N}, conv_out.options());
    } else {
        // Output per (n, c) slice: shape (N, C)
        output = torch::empty({N, C}, conv_out.options());
    }

    fusedPoolingAndReductionKernel<<<totalBlocks, threadsPerBlock, sharedMemSize>>>(
        conv_out.data_ptr<float>(),
        N, C, D, H, W,
        pool_size[0], pool_size[1], pool_size[2],
        bias.data_ptr<float>(),
        sum_dim,
        output.data_ptr<float>(),
        static_cast<float>(divisor)
    );

    cudaDeviceSynchronize();
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward_cuda, "Fused 3D Conv, Pooling, GlobalAvgPool, BiasAdd, and Sum (CUDA) with uniform control flow");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.238 inst/cycle 0.000 5
Executed Ipc Elapsed 1.966 inst/cycle 0.000 5
Issue Slots Busy 55.960 % 0.093 5
Issued Ipc Active 2.238 inst/cycle 0.000 5
SM Busy 55.960 % 0.093 5
Memory Throughput 1981107821152.326 byte/second 296375889172882391040.000 5
Mem Busy 36.052 % 0.111 5
Max Bandwidth 59.136 % 0.267 5
L1/TEX Hit Rate 60.840 % 0.000 5
L2 Hit Rate 13.000 % 0.001 5
Mem Pipes Busy 18.920 % 0.020 5
Warp Cycles Per Issued Instruction 25.834 cycle 0.004 5
Warp Cycles Per Executed Instruction 25.848 cycle 0.005 5
Avg. Active Threads Per Warp 31.480 0.000 5
Avg. Not Predicated Off Threads Per Warp 26.150 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 16.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 89.900 % 0.001 5
Achieved Active Warps Per SM 57.538 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (38.6%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (89.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 344926.24 μs
Device Time 8162.36 μs
Self CPU Time 72.25 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv3d
CPU Time 562008.61 μs
Device Time 7971185.78 μs
Self CPU Time 21626.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 540381.85 μs
Device Time 7971185.78 μs
Self CPU Time 28108.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 512272.90 μs
Device Time 7971185.78 μs
Self CPU Time 56547.87 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution
CPU Time 332921.17 μs
Device Time 6919074.30 μs
Self CPU Time 238418.81 μs
Self Device Time 6919074.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_fprop_implicit_gemm_indexed_f32f32_f32f32_f32_nchwkcrs_nchw_tilesize32x32x8_stage3_warpsize1x2x1_g1_ffma_aligna4_alignc4_execute_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 6919073.02 μs
Self CPU Time 0.00 μs
Self Device Time 6919073.02 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 8831045.94 μs
Device Time 118391.66 μs
Self CPU Time 8831045.94 μs
Self Device Time 118391.66 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45300 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | int N,
| ^~~~~~
13 | int C,
| ~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:12:9: note: the first parameter in the range is 'N'
12 | int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:13:9: note: the last parameter in the range is 'C'
13 | int C,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:16:5: warning: 2 adjacent parameters of 'fusedPoolingAndReductionKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | int W,
| ^~~~~~
17 | int poolD,
| ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:16:9: note: the first parameter in the range is 'W'
16 | int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:17:9: note: the last parameter in the range is 'poolD'
17 | int poolD,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:26:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int nc = blockIdx.x; // in [0, N*C)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:40:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | for (int idx = threadIdx.x; idx < numPools; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:40:56: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | for (int idx = threadIdx.x; idx < numPools; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:83:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | int numWarps = (blockDim.x + 31) >> 5;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:95:33: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
95 | float avg = block_sum / numPools;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:109:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
109 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:113:19: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
113 | torch::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:115:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
115 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:124:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | int N = conv_out.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:125:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
125 | int C = conv_out.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:126:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
126 | int D = conv_out.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:127:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
127 | int H = conv_out.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:128:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
128 | int W = conv_out.size(4);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:133:25: warning: narrowing conversion from 'unsigned long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | int sharedMemSize = ((threadsPerBlock + 31) / 32) * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:147:9: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
147 | pool_size[0], pool_size[1], pool_size[2],
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:147:23: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
147 | pool_size[0], pool_size[1], pool_size[2],
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:147:37: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
147 | pool_size[0], pool_size[1], pool_size[2],
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_8/b3_s1_fused_pooling_uniform/base/base.cu:149:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
149 | sum_dim,
| ^