← Back to Leaderboard

The AI CUDA Engineer 👷

81_Gemm_Swish_Divide_Clamp_Tanh_Clampgemm_2d_map_improved_base

Level 2 • Task 81
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Performs gemm, swish, divide, clamp, tanh, and clamp operations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = x * torch.sigmoid(x)  # Swish activation
    x = x / 2.0
    x = torch.clamp(x, min=-1.0, max=1.0)  # Clamp between -1 and 1
    x = torch.tanh(x)  # Tanh activation
    x = torch.clamp(x, min=-1.0, max=1.0)  # Clamp between -1 and 1
    return x


class Model(nn.Module):
    """
    Simple model that performs a gemm, swish, divide, clamp, tanh, and clamp operations.
    """

    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        mm = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(mm.weight)
        self.bias = nn.Parameter(mm.bias)

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias)


batch_size = 128
in_features = 1024
out_features = 512


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a gemm, swish, divide, clamp, tanh, and clamp operations.
    """
    def __init__(self, in_features, out_features, bias=True):
        super(Model, self).__init__()
        self.gemm = nn.Linear(in_features, out_features, bias=bias)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_features).
        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_features).
        """
        x = self.gemm(x)
        x = x * torch.sigmoid(x)  # Swish activation
        x = x / 2.0
        x = torch.clamp(x, min=-1.0, max=1.0)  # Clamp between -1 and 1
        x = torch.tanh(x)  # Tanh activation
        x = torch.clamp(x, min=-1.0, max=1.0)  # Clamp between -1 and 1
        return x

batch_size = 128
in_features = 1024
out_features = 512

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features]

Kernel Information

Related Kernels (Level 2, Task 81 • 81_Gemm_Swish_Divide_Clamp_Tanh_Clamp)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 gemm_2d_map_base 0.02 2.19 1.90
🥇 gemm_2d_map_improved_base 0.02 2.19 1.90
🥇 hybrid_aligned_2d_kernel_base 0.02 2.19 1.90
🥇 aligned_memory_access_base_base 0.02 2.19 1.90
🥇 optimized_stride_loop_base 0.02 2.19 1.90
🥇 stride_loop_optimization_base_base 0.02 2.19 1.90
🥇 unrolled_2d_map_base_base 0.02 2.19 1.90
🥇 stride_loop_opt_base 0.02 2.19 1.90
🥇 fused_activation_base 0.02 2.19 1.90
🥇 optimized_stride_loop_with_prefetch_base 0.02 2.19 1.90
🥇 optimized_fused_activation_base 0.02 2.19 1.90
🥇 optimized_thread_block_indexing_base 0.02 2.19 1.90
🥇 dim2_grid_activation_base 0.02 2.19 1.90
14 dynamic_block_size_base_base 0.02 2.10 1.82
14 strided_vectorized_base_base 0.02 2.10 1.82
14 even_load_base 0.02 2.10 1.82
14 81_gemm_swish_divide_clamp_tanh_clamp_optimized_blocks_base 0.02 2.10 1.82
14 stride_loop_correct_base 0.02 2.10 1.82
14 adaptive_vectorized_kernel_base 0.02 2.10 1.82
14 uniform_control_flow_base_base 0.02 2.10 1.82
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Macros for input checking
#define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) \
    CHECK_CUDA(x);     \
    CHECK_CONTIGUOUS(x)

// CUDA kernel with improved 2D grid/block mapping for efficient thread-to-data correspondence
template <typename scalar_t>
__global__ void module_kernel_2d_improved(
    const scalar_t* __restrict__ x_in,
    scalar_t* __restrict__ x_out,
    int height,
    int width) {

    // Compute row and column index using 2D grid and block indexing
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    
    if (row < height && col < width) {
        int index = row * width + col;
        scalar_t x = x_in[index];

        // Swish activation: x * sigmoid(x)
        scalar_t sigmoid_x = static_cast<scalar_t>(1) / (static_cast<scalar_t>(1) + exp(-x));
        x = x * sigmoid_x;

        // Divide by 2
        x = x / static_cast<scalar_t>(2);

        // Clamp between -1 and 1
        x = max(min(x, static_cast<scalar_t>(1)), static_cast<scalar_t>(-1));

        // Tanh activation
        x = tanh(x);

        // Clamp again between -1 and 1
        x = max(min(x, static_cast<scalar_t>(1)), static_cast<scalar_t>(-1));

        x_out[index] = x;
    }
}

// CUDA forward function
torch::Tensor module_forward_cuda(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias) {
    
    // Linear operation: x_linear = F.linear(x, weight, bias)
    auto x_linear = torch::addmm(bias, x, weight.t());
    auto x_out = torch::empty_like(x_linear);

    // Assume the input is 2D (height x width)
    int height = x_linear.size(0);
    int width = x_linear.size(1);

    // Define 2D block/grid dims. Using blockDim.x = 32 to align with warp size ensures coalesced accesses.
    dim3 block(32, 8); // 256 threads per block
    dim3 grid((width + block.x - 1) / block.x, (height + block.y - 1) / block.y);

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(x_linear.scalar_type(), "module_forward_cuda", ([&] {
        module_kernel_2d_improved<scalar_t><<<grid, block>>>(
            x_linear.data_ptr<scalar_t>(),
            x_out.data_ptr<scalar_t>(),
            height,
            width);
    }));

    return x_out;
}

// C++ interface
torch::Tensor module_forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias) {
    CHECK_INPUT(x);
    CHECK_INPUT(weight);
    CHECK_INPUT(bias);
    return module_forward_cuda(x, weight, bias);
}

// PyBind11 module definition
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &module_forward, "Custom module forward function (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.380 inst/cycle 0.000 5
Executed Ipc Elapsed 0.128 inst/cycle 0.000 5
Issue Slots Busy 10.306 % 0.072 5
Issued Ipc Active 0.414 inst/cycle 0.000 5
SM Busy 10.306 % 0.072 5
Memory Throughput 75757762733.422 byte/second 7718259594268765184.000 5
Mem Busy 10.452 % 0.111 5
Max Bandwidth 6.832 % 0.057 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 83.200 % 0.012 5
Mem Pipes Busy 3.854 % 0.014 5
Warp Cycles Per Issued Instruction 34.934 cycle 6.645 5
Warp Cycles Per Executed Instruction 37.994 cycle 7.881 5
Avg. Active Threads Per Warp 30.840 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.140 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 21.264 % 0.196 5
Achieved Active Warps Per SM 13.610 warp 0.080 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (20.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 512799.80 μs
Device Time 213.28 μs
Self CPU Time 61.87 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 512737.94 μs
Device Time 213.28 μs
Self CPU Time 119.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 531026.24 μs
Device Time 0.00 μs
Self CPU Time 19065.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 507873.13 μs
Device Time 0.00 μs
Self CPU Time 507873.13 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::addmm
CPU Time 504974.16 μs
Device Time 123984.29 μs
Self CPU Time 173590.06 μs
Self Device Time 123984.29 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm80_xmma_gemm_f32f32_f32f32_f32_tn_n_tilesize32x32x8_stage3_warpsize1x2x1_ffma_aligna4_alignc4_execute_kernel__51_cublas
CPU Time 0.00 μs
Device Time 111312.23 μs
Self CPU Time 0.00 μs
Self Device Time 111312.23 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 63373.22 μs
Device Time 575027.87 μs
Self CPU Time 11272.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 52101.97 μs
Device Time 575027.87 μs
Self CPU Time 17532.39 μs
Self Device Time 575027.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 575027.87 μs
Self CPU Time 0.00 μs
Self Device Time 575027.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45292 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:7:35 bugprone-macro-parentheses
7 | #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:8:41: warning: macro argument should be enclosed in parentheses [bugprone-macro-parentheses]
8 | #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
| ^
| ()
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:22:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int row = blockIdx.y * blockDim.y + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:23:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int col = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:51:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
51 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:52:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
52 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:53:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
53 | torch::Tensor bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:60:18: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
60 | int height = x_linear.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:61:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
61 | int width = x_linear.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:67:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
67 | AT_DISPATCH_FLOATING_TYPES_AND_HALF(x_linear.scalar_type(), "module_forward_cuda", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:246:19: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES_AND_HALF'
246 | TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES_AND_HALF(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:240:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES_AND_HALF'
240 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:80:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
80 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:81:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
81 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_81/b3_s2_gemm_2d_map_improved/base/base.cu:82:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
82 | torch::Tensor bias) {
| ^
| const &