← Back to Leaderboard

The AI CUDA Engineer 👷

98_Matmul_AvgPool_GELU_Scale_Maxfused_matmul_pool_act_max_base

Level 2 • Task 98
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    pool_kernel_size: int,
    scale_factor: float,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Implements Matmul_AvgPool_GELU_Scale_Max pattern using functional operations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        pool_kernel_size (int): Kernel size for average pooling
        scale_factor (float): Scale factor to multiply features by
        weight (torch.Tensor): Weight matrix for linear layer
        bias (torch.Tensor): Bias vector for linear layer

    Returns:
        torch.Tensor: Output tensor of shape (batch_size,)
    """
    x = F.linear(x, weight, bias)
    x = F.avg_pool1d(x.unsqueeze(1), kernel_size=pool_kernel_size).squeeze(1)
    x = F.gelu(x)
    x = x * scale_factor
    x = torch.max(x, dim=1).values
    return x


class Model(nn.Module):
    """
    A model implementing the pattern "Matmul_AvgPool_GELU_Scale_Max".
    """

    def __init__(self, in_features, out_features, pool_kernel_size, scale_factor):
        super(Model, self).__init__()
        gemm = nn.Linear(in_features, out_features)
        self.weight = gemm.weight
        self.bias = gemm.bias

    def forward(self, x, pool_kernel_size, scale_factor, fn=module_fn):
        return fn(x, pool_kernel_size, scale_factor, self.weight, self.bias)


batch_size = 128
in_features = 512
out_features = 256
pool_kernel_size = 4
scale_factor = 2.0


def get_inputs():
    return [torch.randn(batch_size, in_features), pool_kernel_size, scale_factor]


def get_init_inputs():
    return [in_features, out_features, pool_kernel_size, scale_factor]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model implementing the pattern "Matmul_AvgPool_GELU_Scale_Max".
    """
    def __init__(self, in_features, out_features, pool_kernel_size, scale_factor):
        super(Model, self).__init__()
        self.matmul = nn.Linear(in_features, out_features)
        self.avg_pool = nn.AvgPool1d(kernel_size=pool_kernel_size)
        self.scale_factor = scale_factor

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_features).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_features).
        """
        x = self.matmul(x)
        x = self.avg_pool(x.unsqueeze(1)).squeeze(1)
        x = torch.nn.functional.gelu(x)
        x = x * self.scale_factor
        x = torch.max(x, dim=1).values
        return x

batch_size = 128
in_features = 512
out_features = 256
pool_kernel_size = 4
scale_factor = 2.0

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features, pool_kernel_size, scale_factor]

Kernel Information

Related Kernels (Level 2, Task 98 • 98_Matmul_AvgPool_GELU_Scale_Max)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_fused_pipeline_base_base 0.03 1.04 1.50
🥇 shared_memory_optimization_base 0.03 1.04 1.50
🥇 modular_fused_pipeline_base 0.03 1.04 1.50
🥇 strided_fused_pipeline_optimization_base 0.03 1.04 1.50
🥇 fused_pipeline_base 0.03 1.04 1.50
6 fused_pipeline_optimized_block_size_base 0.03 1.01 1.45
6 shared_memory_optimized_base_base 0.03 1.01 1.45
6 strided_fused_pipeline_optimization_base 0.03 1.01 1.45
6 memory_coalesced_fused_pipeline_base 0.03 1.01 1.45
6 even_workload_fused_kernel_base 0.03 1.01 1.45
6 warp_divergence_optimized_base 0.03 1.01 1.45
6 fused_pool_act_max_warp_base 0.03 1.01 1.45
13 constant_memory_fusion_base 0.03 0.97 1.41
14 fusedpoolactmax_base 0.03 0.95 1.37
14 constant_memory_optimization_base_base 0.03 0.95 1.37
16 fused_pipeline_shared_memory_base 0.03 0.92 1.33
17 fused_actmax_atomic_base 0.04 0.80 1.16
17 aligned_matmul_pool_act_max_edit_1 0.04 0.80 1.16
17 aligned_vectorized_ldg_optimized_base 0.04 0.80 1.16
17 fused_matmul_pool_act_max_base 0.04 0.80 1.16
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <float.h>

// Kernel 1: Fused Matrix Multiplication with Bias Addition (using vectorized loads when possible)
__global__ void MatMulWithBiasKernel(const float* __restrict__ A, const float* __restrict__ B,
                                       const float* __restrict__ bias, float* __restrict__ C,
                                       int M, int N, int K) {
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;

    if (row < M && col < N) {
        float val = 0.0f;
        // Use vectorized loads if possible
        if (K % 4 == 0) {
            for (int i = 0; i < K; i += 4) {
                float4 a4 = *reinterpret_cast<const float4*>(&A[row * K + i]);
                float4 b4 = *reinterpret_cast<const float4*>(&B[col * K + i]);
                val = fmaf(a4.x, b4.x, val);
                val = __fmaf_rn(a4.y, b4.y, val);
                val = __fmaf_rn(a4.z, b4.z, val);
                val = __fmaf_rn(a4.w, b4.w, val);
            }
        } else {
            for (int i = 0; i < K; ++i) {
                val = __fmaf_rn(__ldg(&A[row * K + i]), __ldg(&B[col * K + i]), val);
            }
        }
        // Fuse bias addition
        val += __ldg(&bias[col]);
        C[row * N + col] = val;
    }
}

// Kernel 2: Fused Average Pooling, GELU Activation, Scaling, and Max Reduction
// This kernel reads the linear output, performs 1D average pooling over groups of 'pool_kernel_size'
// elements, applies the GELU activation and scaling, and then reduces to a single maximum value per batch row.
__global__ void FusedPoolActMaxKernel(const float* __restrict__ linear_output, float* __restrict__ output,
                                       int M, int N, int pool_kernel_size, float scale_factor) {
    // Each block handles one batch element
    int batch = blockIdx.x;
    // Determine number of pooling segments (assumes N is divisible by pool_kernel_size or truncates remainder)
    int out_length = N / pool_kernel_size;
    float local_max = -FLT_MAX;

    // Each thread processes multiple pooling segments
    for (int i = threadIdx.x; i < out_length; i += blockDim.x) {
        int start_idx = i * pool_kernel_size;
        float sum = 0.0f;
        // Compute pooling sum. Boundary check is added for safety.
        for (int j = 0; j < pool_kernel_size; ++j) {
            int col = start_idx + j;
            if (col < N) {
                sum += __ldg(&linear_output[batch * N + col]);
            }
        }
        // Average pooling (note: using constant division by pool_kernel_size, as in Kernel 2)
        float avg = sum / (float)pool_kernel_size;

        // GELU activation (using erf approximation) fused with scaling
        float gelu = 0.5f * avg * (1.0f + erff(avg * 0.70710678f));
        float scaled = gelu * scale_factor;

        // Track the maximum value across pooling segments
        local_max = fmaxf(local_max, scaled);
    }

    // Use shared memory to reduce local maxima within the block
    __shared__ float shmem[256];  // Assumes blockDim.x <= 256
    int tid = threadIdx.x;
    shmem[tid] = local_max;
    __syncthreads();

    for (int stride = blockDim.x / 2; stride > 0; stride /= 2) {
        if (tid < stride) {
            shmem[tid] = fmaxf(shmem[tid], shmem[tid + stride]);
        }
        __syncthreads();
    }

    // Thread 0 writes the final maximum for this batch element
    if (tid == 0) {
        output[batch] = shmem[0];
    }
}

// The fused forward function which calls the two kernels sequentially
// Step 1: Compute linear transformation with bias fusing matrix multiplication & bias addition
// Step 2: Fuse average pooling, activation, scaling and max reduction in a single kernel to produce a single output per batch

torch::Tensor forward(
    torch::Tensor x,
    int pool_kernel_size,
    float scale_factor,
    torch::Tensor weight,
    torch::Tensor bias) {

    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(bias.is_cuda(), "bias must be a CUDA tensor");

    // Ensure inputs are contiguous
    x = x.contiguous();
    weight = weight.contiguous();
    bias = bias.contiguous();

    // Dimensions
    int M = x.size(0);       // batch size
    int K = x.size(1);       // in_features
    int N = weight.size(0);  // out_features

    auto options = torch::TensorOptions().dtype(x.dtype()).device(x.device());
    // Allocate tensor for the linear transform output
    auto linear_output = torch::empty({M, N}, options);

    // Launch MatMul with Bias kernel using a 16x16 thread block
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks((N + threadsPerBlock.x - 1) / threadsPerBlock.x,
                   (M + threadsPerBlock.y - 1) / threadsPerBlock.y);
    MatMulWithBiasKernel<<<numBlocks, threadsPerBlock>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        linear_output.data_ptr<float>(),
        M, N, K);

    // Launch the fused pooling, activation, and max reduction kernel
    // Each batch element is handled by one block. Using 256 threads per block.
    auto output = torch::empty({M}, options);
    int threads = 256;
    FusedPoolActMaxKernel<<<M, threads>>>(
        linear_output.data_ptr<float>(),
        output.data_ptr<float>(),
        M, N, pool_kernel_size, scale_factor);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused CUDA forward (MatMul+Pool+Act+Max)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.428 inst/cycle 0.000 5
Executed Ipc Elapsed 0.180 inst/cycle 0.000 5
Issue Slots Busy 11.014 % 0.142 5
Issued Ipc Active 0.438 inst/cycle 0.000 5
SM Busy 11.014 % 0.142 5
Memory Throughput 33043091420.430 byte/second 19635024446623464.000 5
Mem Busy 7.898 % 0.004 5
Max Bandwidth 4.112 % 0.001 5
L1/TEX Hit Rate 74.420 % 0.000 5
L2 Hit Rate 90.946 % 0.134 5
Mem Pipes Busy 4.120 % 0.000 5
Warp Cycles Per Issued Instruction 17.312 cycle 0.567 5
Warp Cycles Per Executed Instruction 17.838 cycle 0.601 5
Avg. Active Threads Per Warp 31.800 0.000 5
Avg. Not Predicated Off Threads Per Warp 23.060 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 16.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.108 % 0.000 5
Achieved Active Warps Per SM 7.748 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 31.8 threads being active per cycle. This is further reduced to 23.1 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 586218.34 μs
Device Time 33.09 μs
Self CPU Time 54.07 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 586164.27 μs
Device Time 33.09 μs
Self CPU Time 111.80 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 585796.89 μs
Device Time 0.00 μs
Self CPU Time 116.37 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 585058.37 μs
Device Time 0.00 μs
Self CPU Time 585058.37 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 510634.89 μs
Device Time 28638.99 μs
Self CPU Time 510634.89 μs
Self Device Time 28638.99 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
MatMulWithBiasKernel(float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 239425.03 μs
Self CPU Time 0.00 μs
Self Device Time 239425.03 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 75873.06 μs
Device Time 586983.45 μs
Self CPU Time 15455.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 60420.22 μs
Device Time 586983.45 μs
Self CPU Time 21313.82 μs
Self Device Time 586983.45 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 586983.45 μs
Self CPU Time 0.00 μs
Self Device Time 586983.45 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45292 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:8:67 bugprone-easily-swappable-parameters
8 | __global__ void MatMulWithBiasKernel(const float* __restrict__ A, const float* __restrict__ B,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 | const float* __restrict__ bias, float* __restrict__ C,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:8:93: note: the first parameter in the range is 'B'
8 | __global__ void MatMulWithBiasKernel(const float* __restrict__ A, const float* __restrict__ B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:9:66: note: the last parameter in the range is 'bias'
9 | const float* __restrict__ bias, float* __restrict__ C,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:10:47: warning: 2 adjacent parameters of 'MatMulWithBiasKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
10 | int M, int N, int K) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:10:51: note: the first parameter in the range is 'N'
10 | int M, int N, int K) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:10:58: note: the last parameter in the range is 'K'
10 | int M, int N, int K) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:11:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
11 | int row = blockIdx.y * blockDim.y + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:12:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
12 | int col = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:40: warning: 2 adjacent parameters of 'FusedPoolActMaxKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:44: note: the first parameter in the range is 'M'
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:51: note: the last parameter in the range is 'N'
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:54: warning: 2 adjacent parameters of 'FusedPoolActMaxKernel' of convertible types are easily swapped by mistake [bugprone-easily-swappable-parameters]
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:58: note: the first parameter in the range is 'pool_kernel_size'
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:82: note: the last parameter in the range is 'scale_factor'
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:41:76: note: 'int' and 'float' may be implicitly converted
41 | int M, int N, int pool_kernel_size, float scale_factor) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:43:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
43 | int batch = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:49:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | for (int i = threadIdx.x; i < out_length; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:49:52: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | for (int i = threadIdx.x; i < out_length; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:72:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:76:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
76 | for (int stride = blockDim.x / 2; stride > 0; stride /= 2) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:110:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | int M = x.size(0); // batch size
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:111:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
111 | int K = x.size(1); // in_features
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_98/b4_s1_fused_matmul_pool_act_max/base/base.cu:112:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | int N = weight.size(0); // out_features
| ^