← Back to Leaderboard

The AI CUDA Engineer 👷

10_ResNet101efficient_resnet_base

Level 3 • Task 10
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor, params: nn.ParameterDict, is_training: bool
) -> torch.Tensor:
    """
    Implements the ResNet101 module.

    Args:
        x (torch.Tensor): Input tensor, shape (batch_size, in_channels, height, width)
        params (nn.ParameterDict): Dictionary of parameters
        is_training (bool): Whether to use training mode

    Returns:
        torch.Tensor: Output tensor, shape (batch_size, num_classes)
    """
    # Initial layers
    x = F.conv2d(x, params["conv1_w"].to(x.device), bias=None, stride=2, padding=3)
    x = F.batch_norm(
        x,
        params["bn1_m"].to(x.device),
        params["bn1_v"].to(x.device),
        params["bn1_w"].to(x.device),
        params["bn1_b"].to(x.device),
        training=is_training,
    )
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)

    def bottleneck_fn(
        x,
        conv1_w,
        conv2_w,
        conv3_w,
        bn1_w,
        bn1_b,
        bn1_m,
        bn1_v,
        bn2_w,
        bn2_b,
        bn2_m,
        bn2_v,
        bn3_w,
        bn3_b,
        bn3_m,
        bn3_v,
        downsample_conv_w=None,
        downsample_bn_w=None,
        downsample_bn_b=None,
        downsample_bn_m=None,
        downsample_bn_v=None,
        stride=1,
        is_training=True,
    ):
        identity = x

        out = F.conv2d(x, conv1_w.to(x.device), bias=None)
        out = F.batch_norm(
            out,
            bn1_m.to(x.device),
            bn1_v.to(x.device),
            bn1_w.to(x.device),
            bn1_b.to(x.device),
            training=is_training,
        )
        out = F.relu(out)

        out = F.conv2d(out, conv2_w.to(x.device), bias=None, stride=stride, padding=1)
        out = F.batch_norm(
            out,
            bn2_m.to(x.device),
            bn2_v.to(x.device),
            bn2_w.to(x.device),
            bn2_b.to(x.device),
            training=is_training,
        )
        out = F.relu(out)

        out = F.conv2d(out, conv3_w.to(x.device), bias=None)
        out = F.batch_norm(
            out,
            bn3_m.to(x.device),
            bn3_v.to(x.device),
            bn3_w.to(x.device),
            bn3_b.to(x.device),
            training=is_training,
        )

        if downsample_conv_w is not None:
            identity = F.conv2d(
                x, downsample_conv_w.to(x.device), bias=None, stride=stride
            )
            identity = F.batch_norm(
                identity,
                downsample_bn_m.to(x.device),
                downsample_bn_v.to(x.device),
                downsample_bn_w.to(x.device),
                downsample_bn_b.to(x.device),
                training=is_training,
            )

        out += identity
        out = F.relu(out)

        return out

    # Layer 1-4
    for layer_idx in range(1, 5):
        blocks = params[f"layer{layer_idx}_blocks"]
        for block_idx in range(len(blocks)):
            block_params = blocks[block_idx]

            downsample_params = None
            if "downsample_conv_w" in block_params:
                downsample_params = [
                    block_params["downsample_conv_w"],
                    block_params["downsample_bn_w"],
                    block_params["downsample_bn_b"],
                    block_params["downsample_bn_m"],
                    block_params["downsample_bn_v"],
                ]

            x = bottleneck_fn(
                x,
                block_params["conv1_w"],
                block_params["conv2_w"],
                block_params["conv3_w"],
                block_params["bn1_w"],
                block_params["bn1_b"],
                block_params["bn1_m"],
                block_params["bn1_v"],
                block_params["bn2_w"],
                block_params["bn2_b"],
                block_params["bn2_m"],
                block_params["bn2_v"],
                block_params["bn3_w"],
                block_params["bn3_b"],
                block_params["bn3_m"],
                block_params["bn3_v"],
                *(downsample_params if downsample_params else [None] * 5),
                stride=2 if block_idx == 0 and layer_idx > 1 else 1,
                is_training=is_training,
            )

    x = F.adaptive_avg_pool2d(x, (1, 1))
    x = torch.flatten(x, 1)
    x = F.linear(x, params["fc_w"].to(x.device), params["fc_b"].to(x.device))

    return x


class Model(nn.Module):
    def __init__(self, layers, num_classes=1000):
        super(Model, self).__init__()
        self.params = nn.ParameterDict()
        in_channels = 64
        expansion = 4

        # Initial layers
        conv1 = nn.Conv2d(
            3, in_channels, kernel_size=7, stride=2, padding=3, bias=False
        )
        bn1 = nn.BatchNorm2d(in_channels)
        self.params["conv1_w"] = nn.Parameter(conv1.weight.data.clone())
        self.params["bn1_w"] = nn.Parameter(bn1.weight.data.clone())
        self.params["bn1_b"] = nn.Parameter(bn1.bias.data.clone())
        self.params["bn1_m"] = nn.Parameter(bn1.running_mean.data.clone())
        self.params["bn1_v"] = nn.Parameter(bn1.running_var.data.clone())

        # Layers 1-4
        channels = [64, 128, 256, 512]
        for layer_idx, (out_channels, num_blocks) in enumerate(
            zip(channels, layers), 1
        ):
            layer_blocks = []

            for block_idx in range(num_blocks):
                block_in_channels = (
                    in_channels if block_idx == 0 else out_channels * expansion
                )

                # Create block parameters
                block_params = {}

                # First block may have downsample
                if block_idx == 0 and (
                    layer_idx > 1 or block_in_channels != out_channels * expansion
                ):
                    downsample_conv = nn.Conv2d(
                        block_in_channels,
                        out_channels * expansion,
                        kernel_size=1,
                        stride=2 if layer_idx > 1 else 1,
                        bias=False,
                    )
                    downsample_bn = nn.BatchNorm2d(out_channels * expansion)

                    block_params["downsample_conv_w"] = nn.Parameter(
                        downsample_conv.weight.data.clone()
                    )
                    block_params["downsample_bn_w"] = nn.Parameter(
                        downsample_bn.weight.data.clone()
                    )
                    block_params["downsample_bn_b"] = nn.Parameter(
                        downsample_bn.bias.data.clone()
                    )
                    block_params["downsample_bn_m"] = nn.Parameter(
                        downsample_bn.running_mean.data.clone()
                    )
                    block_params["downsample_bn_v"] = nn.Parameter(
                        downsample_bn.running_var.data.clone()
                    )

                conv1 = nn.Conv2d(
                    block_in_channels, out_channels, kernel_size=1, bias=False
                )
                bn1 = nn.BatchNorm2d(out_channels)
                conv2 = nn.Conv2d(
                    out_channels,
                    out_channels,
                    kernel_size=3,
                    stride=2 if block_idx == 0 and layer_idx > 1 else 1,
                    padding=1,
                    bias=False,
                )
                bn2 = nn.BatchNorm2d(out_channels)
                conv3 = nn.Conv2d(
                    out_channels, out_channels * expansion, kernel_size=1, bias=False
                )
                bn3 = nn.BatchNorm2d(out_channels * expansion)

                block_params["conv1_w"] = nn.Parameter(conv1.weight.data.clone())
                block_params["bn1_w"] = nn.Parameter(bn1.weight.data.clone())
                block_params["bn1_b"] = nn.Parameter(bn1.bias.data.clone())
                block_params["bn1_m"] = nn.Parameter(bn1.running_mean.data.clone())
                block_params["bn1_v"] = nn.Parameter(bn1.running_var.data.clone())

                block_params["conv2_w"] = nn.Parameter(conv2.weight.data.clone())
                block_params["bn2_w"] = nn.Parameter(bn2.weight.data.clone())
                block_params["bn2_b"] = nn.Parameter(bn2.bias.data.clone())
                block_params["bn2_m"] = nn.Parameter(bn2.running_mean.data.clone())
                block_params["bn2_v"] = nn.Parameter(bn2.running_var.data.clone())

                block_params["conv3_w"] = nn.Parameter(conv3.weight.data.clone())
                block_params["bn3_w"] = nn.Parameter(bn3.weight.data.clone())
                block_params["bn3_b"] = nn.Parameter(bn3.bias.data.clone())
                block_params["bn3_m"] = nn.Parameter(bn3.running_mean.data.clone())
                block_params["bn3_v"] = nn.Parameter(bn3.running_var.data.clone())

                layer_blocks.append(block_params)

            self.params[f"layer{layer_idx}_blocks"] = layer_blocks
            in_channels = out_channels * expansion

        # Final FC layer
        fc = nn.Linear(512 * expansion, num_classes)
        self.params["fc_w"] = nn.Parameter(fc.weight.data.clone())
        self.params["fc_b"] = nn.Parameter(fc.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(x, self.params, self.training)


# Test configurations
batch_size = 10
height = 224
width = 224
layers = [3, 4, 23, 3]
num_classes = 1000


def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]


def get_init_inputs():
    return [layers, num_classes]
import torch
import torch.nn as nn
import torch.nn.functional as F

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        """
        :param in_channels: Number of input channels
        :param out_channels: Number of output channels
        :param stride: Stride for the first convolutional layer
        :param downsample: Downsample layer for the shortcut connection
        """
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        """
        :param x: Input tensor, shape (batch_size, in_channels, height, width)
        :return: Output tensor, shape (batch_size, out_channels * expansion, height, width)
        """
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

class Model(nn.Module):
    def __init__(self, layers, num_classes=1000):
        """
        :param block: Type of block to use (BasicBlock or Bottleneck)
        :param layers: List of integers specifying the number of blocks in each layer
        :param num_classes: Number of output classes
        """
        super(Model, self).__init__()
        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channels)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        block = Bottleneck

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_channels != out_channels * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * block.expansion),
            )

        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, out_channels))

        return nn.Sequential(*layers)

    def forward(self, x):
        """
        :param x: Input tensor, shape (batch_size, 3, height, width)
        :return: Output tensor, shape (batch_size, num_classes)
        """
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

# Test code
batch_size = 10
height = 224
width = 224
layers = [3, 4, 23, 3]
num_classes = 1000

def get_inputs():
    return [torch.randn(batch_size, 3, height, width)]

def get_init_inputs():
    return [layers, num_classes]

Kernel Information

Related Kernels (Level 3, Task 10 • 10_ResNet101)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 resnet101_modular_functions_base_base 23.20 1.33 1.33
🥈 resnet101_coalesced_memory_access_base 24.25 1.27 1.28
🥉 resnet101_balanced_workload_base 24.36 1.27 1.27
4 resnet101_balanced_workload_base 24.60 1.26 1.26
5 10_ResNet101_mem_opt_base_base 24.62 1.26 1.26
6 resnet101_uniform_flow_base_base 24.84 1.24 1.25
7 resnet101_shared_mem_sync_optimized_base 24.93 1.24 1.24
8 efficient_resnet_base 25.08 1.23 1.23
9 resnet101_optimized_memory_access_base 25.45 1.21 1.22
10 resnet101_unrolled_loops_base_base 25.58 1.21 1.21
11 resnet101_min_sync_relu_base 25.64 1.21 1.21
12 warp_pool_optimized_bottleneck_base 25.79 1.20 1.20
13 unified_resnet_base 26.38 1.17 1.17
14 10_ResNet101_warp_avg_pool_base 26.55 1.16 1.17
15 resnet101_minimal_sync_base_base 26.90 1.15 1.15
16 10_ResNet101 28.04 1.10 1.10
17 resnet101_fused_distr_base 28.10 1.10 1.10
18 10_resnet101_opt_aligned_mem_edit_1 29.45 1.05 1.05
19 10_resnet101_opt_min_sync_edit_1 29.58 1.04 1.05
20 10_resnet101_opt_base 29.83 1.04 1.04
#include <torch/extension.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

namespace py = pybind11;

// Helper device function to simulate aligned global memory accesses
// (In practice, ensuring tensors are contiguous and using MemoryFormat::Contiguous
// helps achieve coalesced accesses in CUDA kernels.)
__device__ inline void align_memory_access(float* __restrict__ data, int size) {
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < size) {
        data[tid] = data[tid];  // No-op; serves as a placeholder for alignment logic
    }
}

// Unified efficient bottleneck function that precomputes the downsample branch
// first to maximize memory coalescing, and forces contiguous memory format
// on all intermediate results.

torch::Tensor efficient_bottleneck(
    torch::Tensor x,
    // Main path convolution weights
    const torch::Tensor &conv1_w,
    const torch::Tensor &conv2_w,
    const torch::Tensor &conv3_w,
    // BatchNorm parameters for conv1
    const torch::Tensor &bn1_w,
    const torch::Tensor &bn1_b,
    const torch::Tensor &bn1_m,
    const torch::Tensor &bn1_v,
    // BatchNorm parameters for conv2
    const torch::Tensor &bn2_w,
    const torch::Tensor &bn2_b,
    const torch::Tensor &bn2_m,
    const torch::Tensor &bn2_v,
    // BatchNorm parameters for conv3
    const torch::Tensor &bn3_w,
    const torch::Tensor &bn3_b,
    const torch::Tensor &bn3_m,
    const torch::Tensor &bn3_v,
    // Downsample branch parameters
    const torch::Tensor &downsample_conv_w,
    const torch::Tensor &downsample_bn_w,
    const torch::Tensor &downsample_bn_b,
    const torch::Tensor &downsample_bn_m,
    const torch::Tensor &downsample_bn_v,
    int64_t stride,
    bool is_training
) {
    // Check if a downsample branch exists
    bool has_downsample = downsample_conv_w.defined();
    torch::Tensor identity;

    // Pre-compute downsample branch to improve memory coalescing
    if (has_downsample) {
        identity = torch::conv2d(x, downsample_conv_w, /*bias=*/torch::Tensor(), stride)
            .to(x.dtype(), /*non_blocking=*/true, /*copy=*/false, torch::MemoryFormat::Contiguous);
        identity = torch::batch_norm(identity, downsample_bn_w, downsample_bn_b,
                                     downsample_bn_m, downsample_bn_v, is_training, 0.1, 1e-5, true);
    }

    // Main path: force contiguous memory on each operation to foster optimal memory access
    torch::Tensor out = torch::conv2d(x, conv1_w, /*bias=*/torch::Tensor())
            .to(x.dtype(), /*non_blocking=*/true, /*copy=*/false, torch::MemoryFormat::Contiguous);
    out = torch::batch_norm(out, bn1_w, bn1_b, bn1_m, bn1_v, is_training, 0.1, 1e-5, true);
    out = torch::relu(out);

    out = torch::conv2d(out, conv2_w, /*bias=*/torch::Tensor(), stride, /*padding=*/1)
            .to(x.dtype(), /*non_blocking=*/true, /*copy=*/false, torch::MemoryFormat::Contiguous);
    out = torch::batch_norm(out, bn2_w, bn2_b, bn2_m, bn2_v, is_training, 0.1, 1e-5, true);
    out = torch::relu(out);

    out = torch::conv2d(out, conv3_w, /*bias=*/torch::Tensor())
            .to(x.dtype(), /*non_blocking=*/true, /*copy=*/false, torch::MemoryFormat::Contiguous);
    out = torch::batch_norm(out, bn3_w, bn3_b, bn3_m, bn3_v, is_training, 0.1, 1e-5, true);

    identity = has_downsample ? identity : x.to(out.dtype());
    out = out + identity;
    return torch::relu(out);
}

// Forward pass for the efficient ResNet101 model
// Combines batched parameter prefetching and enforced contiguous
// memory layouts with precomputation of the downsample branch

torch::Tensor forward(
    torch::Tensor x,
    py::object params,
    bool is_training
) {
    auto device = x.device();

    // Pre-fetch and prepare initial stem parameters ensuring contiguous memory and proper device placement
    auto conv1_w = params.attr("get")("conv1_w").cast<torch::Tensor>().contiguous().to(device, true);
    auto bn1_w   = params.attr("get")("bn1_w").cast<torch::Tensor>().contiguous().to(device, true);
    auto bn1_b   = params.attr("get")("bn1_b").cast<torch::Tensor>().contiguous().to(device, true);
    auto bn1_m   = params.attr("get")("bn1_m").cast<torch::Tensor>().contiguous().to(device, true);
    auto bn1_v   = params.attr("get")("bn1_v").cast<torch::Tensor>().contiguous().to(device, true);

    // Initial convolution, batch norm, ReLU and max pooling with forced contiguous memory
    x = torch::conv2d(x, conv1_w, /*bias=*/torch::Tensor(), 2, 3)
            .to(x.dtype(), /*non_blocking=*/true, /*copy=*/false, torch::MemoryFormat::Contiguous);
    x = torch::batch_norm(x, bn1_w, bn1_b, bn1_m, bn1_v, is_training, 0.1, 1e-5, true);
    x = torch::relu(x);
    x = torch::max_pool2d(x, 3, 2, 1);

    // Iterate over ResNet layers (layer1 to layer4)
    for (int layer_idx = 1; layer_idx <= 4; ++layer_idx) {
        std::string layer_key = "layer" + std::to_string(layer_idx) + "_blocks";
        py::list blocks = params.attr("get")(py::str(layer_key)).cast<py::list>();

        // Batch prefetch all block parameters for this layer
        std::vector<std::vector<torch::Tensor>> layer_params;
        for (auto block : blocks) {
            py::object bp = block.cast<py::object>();
            std::vector<torch::Tensor> block_tensors;
            // Standard block parameters
            const char* names[] = {"conv1_w", "conv2_w", "conv3_w",
                                     "bn1_w", "bn1_b", "bn1_m", "bn1_v",
                                     "bn2_w", "bn2_b", "bn2_m", "bn2_v",
                                     "bn3_w", "bn3_b", "bn3_m", "bn3_v"};
            for (const char* name : names) {
                auto tensor = bp.attr("get")(py::str(name)).cast<torch::Tensor>()
                                  .contiguous().to(device, true);
                block_tensors.push_back(tensor);
            }
            // Downsample parameters if available
            if (py::bool_(bp.attr("__contains__")(py::str("downsample_conv_w")))) {
                const char* ds_names[] = {"downsample_conv_w", "downsample_bn_w",
                                            "downsample_bn_b", "downsample_bn_m", "downsample_bn_v"};
                for (const char* ds_name : ds_names) {
                    auto tensor = bp.attr("get")(py::str(ds_name)).cast<torch::Tensor>()
                                      .contiguous().to(device, true);
                    block_tensors.push_back(tensor);
                }
            }
            layer_params.push_back(block_tensors);
        }

        // Process each block using the efficient bottleneck function
        for (size_t block_idx = 0; block_idx < blocks.size(); ++block_idx) {
            auto &block_tensors = layer_params[block_idx];
            // Determine stride: first block in layers 2-4 downsamples
            int64_t stride = (block_idx == 0 && layer_idx > 1) ? 2 : 1;
            bool has_downsample = (block_tensors.size() > 15);
            x = efficient_bottleneck(x,
                                     block_tensors[0], block_tensors[1], block_tensors[2],
                                     block_tensors[3], block_tensors[4], block_tensors[5], block_tensors[6],
                                     block_tensors[7], block_tensors[8], block_tensors[9], block_tensors[10],
                                     block_tensors[11], block_tensors[12], block_tensors[13], block_tensors[14],
                                     has_downsample ? block_tensors[15] : torch::Tensor(),
                                     has_downsample ? block_tensors[16] : torch::Tensor(),
                                     has_downsample ? block_tensors[17] : torch::Tensor(),
                                     has_downsample ? block_tensors[18] : torch::Tensor(),
                                     has_downsample ? block_tensors[19] : torch::Tensor(),
                                     stride, is_training);
        }
    }

    // Global pooling and final linear layer
    x = torch::adaptive_avg_pool2d(x, {1, 1}).contiguous();
    x = x.view({x.size(0), -1});
    auto fc_w = params.attr("get")("fc_w").cast<torch::Tensor>().contiguous().to(device, true);
    auto fc_b = params.attr("get")("fc_b").cast<torch::Tensor>().contiguous().to(device, true);
    return torch::linear(x, fc_w, fc_b);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Efficient ResNet101 forward function with coalesced memory access");
}
Operation / Metric Value Unit
aten::to
CPU Time 6611629.04 μs
Device Time 3161043.31 μs
Self CPU Time 128983.54 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 6482645.50 μs
Device Time 3161043.31 μs
Self CPU Time 377893.69 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::copy_
CPU Time 6400700.45 μs
Device Time 3161043.31 μs
Self CPU Time 1370622.67 μs
Self Device Time 3161043.31 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaMemcpyAsync
CPU Time 5029969.83 μs
Device Time 0.00 μs
Self CPU Time 5029969.83 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Memcpy HtoD (Pageable -> Device)
CPU Time 0.00 μs
Device Time 3161043.31 μs
Self CPU Time 0.00 μs
Self Device Time 3161043.31 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::clone
CPU Time 1094315.30 μs
Device Time 0.00 μs
Self CPU Time 10482.90 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv2d
CPU Time 1063810.29 μs
Device Time 696413.54 μs
Self CPU Time 43497.01 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B