← Back to Leaderboard

The AI CUDA Engineer 👷

36_LTSMHnoptimized_ltsmh_coalesced_base

Level 3 • Task 36
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _VF
from typing import List


def module_fn(
    x: torch.Tensor,
    lstm_weights_ih: List[torch.Tensor],
    lstm_weights_hh: List[torch.Tensor],
    lstm_biases_ih: List[torch.Tensor],
    lstm_biases_hh: List[torch.Tensor],
    h0: torch.Tensor,
    c0: torch.Tensor,
    is_training: bool,
) -> torch.Tensor:
    """
    Functional implementation of LSTM with Hn

    Args:
        x: Input tensor of shape (batch_size, sequence_length, input_size)
        lstm_weights_ih: List of input-hidden weight tensors for each LSTM layer
        lstm_weights_hh: List of hidden-hidden weight tensors for each LSTM layer
        lstm_biases_ih: List of input-hidden bias tensors for each LSTM layer
        lstm_biases_hh: List of hidden-hidden bias tensors for each LSTM layer
        h0: Initial hidden state
        c0: Initial cell state
        is_training: Whether in training mode

    Returns:
        Final hidden state tensor
    """
    h0 = h0.to(x.device)
    c0 = c0.to(x.device)

    # Run LSTM layers
    out = x
    hn = h0
    cn = c0

    for i in range(len(lstm_weights_ih)):
        params = (
            lstm_weights_ih[i],
            lstm_weights_hh[i],
            lstm_biases_ih[i],
            lstm_biases_hh[i],
        )
        result = _VF.lstm(
            out,
            (hn[i : i + 1], cn[i : i + 1]),
            params,
            True,  # has_biases
            1,  # num_layers
            0.0 if not is_training else dropout,  # dropout
            is_training,  # training
            False,  # bidirectional
            True,
        )  # batch_first

        out = result[0]
        # Update the corresponding layer's hidden state
        hn = hn.clone()
        cn = cn.clone()
        hn[i : i + 1] = result[1]
        cn[i : i + 1] = result[2]

    return hn


class Model(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, dropout=0.0):
        """
        Initialize the LSTM model.

        :param input_size: The number of expected features in the input `x`
        :param hidden_size: The number of features in the hidden state `h`
        :param num_layers: Number of recurrent layers
        :param output_size: The number of output features
        :param dropout: If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last layer
        """
        super(Model, self).__init__()

        # Initialize hidden states
        self.h0 = torch.randn((num_layers, batch_size, hidden_size))
        self.c0 = torch.randn((num_layers, batch_size, hidden_size))

        # Extract LSTM parameters
        lstm = nn.LSTM(
            input_size,
            hidden_size,
            num_layers,
            batch_first=True,
            dropout=dropout,
            bidirectional=False,
        )

        # Get weights and biases for each layer
        self.lstm_weights_ih = nn.ParameterList()
        self.lstm_weights_hh = nn.ParameterList()
        self.lstm_biases_ih = nn.ParameterList()
        self.lstm_biases_hh = nn.ParameterList()

        for i in range(num_layers):
            self.lstm_weights_ih.append(
                nn.Parameter(getattr(lstm, f"weight_ih_l{i}").data.clone())
            )
            self.lstm_weights_hh.append(
                nn.Parameter(getattr(lstm, f"weight_hh_l{i}").data.clone())
            )
            self.lstm_biases_ih.append(
                nn.Parameter(getattr(lstm, f"bias_ih_l{i}").data.clone())
            )
            self.lstm_biases_hh.append(
                nn.Parameter(getattr(lstm, f"bias_hh_l{i}").data.clone())
            )

        # Extract linear layer parameters
        fc = nn.Linear(hidden_size, output_size)
        self.fc_weight = nn.Parameter(fc.weight.data.clone())
        self.fc_bias = nn.Parameter(fc.bias.data.clone())

    def forward(self, x, fn=module_fn):
        return fn(
            x,
            self.lstm_weights_ih,
            self.lstm_weights_hh,
            self.lstm_biases_ih,
            self.lstm_biases_hh,
            self.h0,
            self.c0,
            self.training,
        )


# Test code
batch_size = 10
sequence_length = 512
input_size = 128
hidden_size = 256
num_layers = 6
output_size = 10
dropout = 0.0


def get_inputs():
    return [torch.randn(batch_size, sequence_length, input_size)]


def get_init_inputs():
    return [input_size, hidden_size, num_layers, output_size, dropout]
import torch
import torch.nn as nn

class Model(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, dropout=0.0):
        """
        Initialize the LSTM model.

        :param input_size: The number of expected features in the input `x`
        :param hidden_size: The number of features in the hidden state `h`
        :param num_layers: Number of recurrent layers
        :param output_size: The number of output features
        :param dropout: If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last layer, with dropout probability equal to `dropout`
        """
        super(Model, self).__init__()
        # Initialize hidden state with random values
        self.h0 = torch.randn((num_layers, batch_size, hidden_size))
        self.c0 = torch.randn((num_layers, batch_size, hidden_size))
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout, bidirectional=False)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        """
        Forward pass through the LSTM model.

        :param x: The input tensor, shape (batch_size, sequence_length, input_size)
        :return: The output tensor, shape (batch_size, sequence_length, output_size)
        """
        self.h0 = self.h0.to(x.device)
        self.c0 = self.h0.to(x.device)
        
        # Forward propagate LSTM
        out, state = self.lstm(x, (self.h0, self.c0))  # out: tensor of shape (batch_size, seq_length, hidden_size)
        
        # Decode the hidden state of the last time step
        out = self.fc(out[:, -1, :])  # out: tensor of shape (batch_size, output_size)
        
        return state[0]

# Test code
batch_size = 10
sequence_length = 512
input_size = 128
hidden_size = 256
num_layers = 6
output_size = 10
dropout = 0.0

def get_inputs():
    return [torch.randn(batch_size, sequence_length, input_size)]

def get_init_inputs():
    return [input_size, hidden_size, num_layers, output_size, dropout]

Kernel Information

Related Kernels (Level 3, Task 36 • 36_LTSMHn)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_lstm_base 36.44 0.76 1.59
🥈 unrolled_lstm_optimized_base 37.00 0.75 1.56
🥉 36_ltsmh_n_modular_base 37.61 0.74 1.54
4 optimized_lstm_forward_base 37.82 0.73 1.53
5 36_LTSMHn 37.86 0.73 1.53
6 combined_unroll_base 38.18 0.73 1.52
7 36_LTSMHn_unrolled_base 38.19 0.73 1.51
8 optimized_ltsmh_coalesced_base 38.38 0.72 1.51
9 warp_divergence_optimized_lstm_base 41.31 0.67 1.40
10 fused_lstm_edit_1 49.73 0.56 1.16
11 fused_lstm_base 49.76 0.56 1.16
12 36_ltsmhn_coalesced_mem_edit_1 49.92 0.56 1.16
13 36_ltsmhn_warp_aligned_base 50.08 0.55 1.15
14 36_ltsmhn_coalesced_mem_base 50.09 0.55 1.15
15 optimized_lstm_forward_base 50.47 0.55 1.15
16 fused_lstm_sync_opt_edit_1 813.07 0.03 0.07
#include <torch/extension.h>
#include <torch/torch.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <vector>
#include <tuple>

// CUDA kernel to perform coalesced copy
template <typename scalar_t>
__global__ void coalesced_copy_kernel(const scalar_t* __restrict__ src, scalar_t* __restrict__ dst, size_t numel) {
    size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < numel) {
        dst[idx] = src[idx];
    }
}

// Helper function to launch the custom copy kernel ensuring memory coalescing
void coalesced_copy_tensor(const torch::Tensor &src, torch::Tensor &dst) {
    auto numel = src.numel();
    int threads = 256;
    int blocks = (numel + threads - 1) / threads;
    AT_DISPATCH_FLOATING_TYPES(src.scalar_type(), "coalesced_copy", ([&] {
        coalesced_copy_kernel<scalar_t><<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(
            src.data_ptr<scalar_t>(),
            dst.data_ptr<scalar_t>(),
            numel
        );
    }));
}

// Main forward function for the optimized LTSMHn kernel with memory coalescing
torch::Tensor forward(
    torch::Tensor x,
    std::vector<torch::Tensor> lstm_weights_ih,
    std::vector<torch::Tensor> lstm_weights_hh,
    std::vector<torch::Tensor> lstm_biases_ih,
    std::vector<torch::Tensor> lstm_biases_hh,
    torch::Tensor h0,
    torch::Tensor c0,
    bool is_training
) {
    // Ensure all tensors are on the proper device and are contiguous
    auto device = x.device();
    x = x.to(device).contiguous();
    h0 = h0.to(device).contiguous();
    c0 = c0.to(device).contiguous();

    // Clone initial states for manipulation
    torch::Tensor out = x;
    torch::Tensor hn = h0.clone();
    torch::Tensor cn = c0.clone();

    const size_t num_layers = lstm_weights_ih.size();

    // Lambda to process each LSTM layer
    auto process_layer = [&](size_t i) {
        // Extract parameters for layer i
        auto weight_ih = lstm_weights_ih[i];
        auto weight_hh = lstm_weights_hh[i];
        auto bias_ih = lstm_biases_ih[i];
        auto bias_hh = lstm_biases_hh[i];

        int64_t input_size = weight_ih.size(1);
        int64_t hidden_size = weight_hh.size(1);

        // Create a one-layer LSTM module
        torch::nn::LSTM lstm_model(
            torch::nn::LSTMOptions(input_size, hidden_size)
                .num_layers(1)
                .batch_first(true)
                .bidirectional(false)
        );
        lstm_model->to(device);

        // Copy the layer parameters (assumed to be stored contiguously)
        lstm_model->named_parameters()["weight_ih_l0"].copy_(weight_ih);
        lstm_model->named_parameters()["weight_hh_l0"].copy_(weight_hh);
        lstm_model->named_parameters()["bias_ih_l0"].copy_(bias_ih);
        lstm_model->named_parameters()["bias_hh_l0"].copy_(bias_hh);

        // Extract the corresponding hidden and cell state slices
        torch::Tensor h_slice = hn.narrow(0, i, 1);
        torch::Tensor c_slice = cn.narrow(0, i, 1);
        std::tuple<torch::Tensor, torch::Tensor> state_tuple = std::make_tuple(h_slice, c_slice);

        lstm_model->train(is_training);

        // Forward pass through the current LSTM layer
        auto output_and_state = lstm_model->forward(out, state_tuple);
        auto output = std::get<0>(output_and_state);
        auto state = std::get<1>(output_and_state);
        auto h_n = std::get<0>(state);
        auto c_n = std::get<1>(state);

        // Ensure outputs are contiguous for coalesced memory access
        h_n = h_n.contiguous();
        c_n = c_n.contiguous();

        // Update the global hidden and cell states using the coalesced copy kernel
        torch::Tensor h_target = hn.narrow(0, i, 1);
        torch::Tensor c_target = cn.narrow(0, i, 1);
        coalesced_copy_tensor(h_n, h_target);
        coalesced_copy_tensor(c_n, c_target);

        // The output of the current layer becomes the input for the next layer
        out = output;
    };

    // Explicitly unroll the first four layers if present
    if (num_layers > 0) process_layer(0);
    if (num_layers > 1) process_layer(1);
    if (num_layers > 2) process_layer(2);
    if (num_layers > 3) process_layer(3);
    for (size_t i = 4; i < num_layers; ++i) {
        process_layer(i);
    }

    return hn;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized LSTM forward (CUDA) with memory coalescing");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.106 inst/cycle 0.000 5
Executed Ipc Elapsed 0.000 inst/cycle 0.000 5
Issue Slots Busy 2.960 % 0.009 5
Issued Ipc Active 0.116 inst/cycle 0.000 5
SM Busy 2.960 % 0.009 5
Memory Throughput 4069562026.356 byte/second 18606954756246856.000 5
Mem Busy 10.170 % 0.076 5
Max Bandwidth 5.234 % 0.030 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 100.204 % 0.112 5
Mem Pipes Busy 0.124 % 0.000 5
Warp Cycles Per Issued Instruction 64.882 cycle 8.751 5
Warp Cycles Per Executed Instruction 71.062 cycle 10.484 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.480 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 11.996 % 0.042 5
Achieved Active Warps Per SM 7.676 warp 0.018 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 1146603.73 μs
Device Time 98820.92 μs
Self CPU Time 5229.82 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::copy_
CPU Time 900234.71 μs
Device Time 134630.59 μs
Self CPU Time 207029.68 μs
Self Device Time 134630.59 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::uniform_
CPU Time 2615948.65 μs
Device Time 0.00 μs
Self CPU Time 2615948.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 4441291.76 μs
Device Time 5068.97 μs
Self CPU Time 4441291.76 μs
Self Device Time 5068.97 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::lstm
CPU Time 6577211.30 μs
Device Time 5951440.73 μs
Self CPU Time 17393.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_cudnn_rnn
CPU Time 6551467.20 μs
Device Time 5951440.73 μs
Self CPU Time 1678223.07 μs
Self Device Time 5950284.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void cutlass::Kernel<cutlass_80_tensorop_s1688gemm_64x64_32x6_tn_align4>(cutlass_80_tensorop_s1688gemm_64x64_32x6_tn_align4::Params)
CPU Time 0.00 μs
Device Time 3819032.22 μs
Self CPU Time 0.00 μs
Self Device Time 3819032.22 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void elemWiseRNNcell<float, float, float, (cudnnRNNMode_t)2, (cudnnRNNBiasMode_t)2>(int, int, int, int, int, bool, float const*, float const*, float const*, float const*, float const*, float const*, float const*, float*, float*, float*, float*, float*, cudnnRNNClipMode_t, cudnnNanPropagation_t, float, float)
CPU Time 0.00 μs
Device Time 2131255.94 μs
Self CPU Time 0.00 μs
Self Device Time 2131255.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45312 warnings generated when compiling for host.
Suppressed 45346 warnings (45299 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:21:18 bugprone-narrowing-conversions
21 | int blocks = (numel + threads - 1) / threads;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:22:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
22 | AT_DISPATCH_FLOATING_TYPES(src.scalar_type(), "coalesced_copy", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:34:5: warning: 4 adjacent parameters of 'forward' of similar type ('std::vector<torch::Tensor>') are easily swapped by mistake [bugprone-easily-swappable-parameters]
34 | std::vector<torch::Tensor> lstm_weights_ih,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
35 | std::vector<torch::Tensor> lstm_weights_hh,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
36 | std::vector<torch::Tensor> lstm_biases_ih,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
37 | std::vector<torch::Tensor> lstm_biases_hh,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:34:32: note: the first parameter in the range is 'lstm_weights_ih'
34 | std::vector<torch::Tensor> lstm_weights_ih,
| ^~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:37:32: note: the last parameter in the range is 'lstm_biases_hh'
37 | std::vector<torch::Tensor> lstm_biases_hh,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:58:14: warning: the variable 'weight_ih' is copy-constructed from a const reference but is only used as const reference; consider making it a const reference [performance-unnecessary-copy-initialization]
58 | auto weight_ih = lstm_weights_ih[i];
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:59:14: warning: the variable 'weight_hh' is copy-constructed from a const reference but is only used as const reference; consider making it a const reference [performance-unnecessary-copy-initialization]
59 | auto weight_hh = lstm_weights_hh[i];
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:60:14: warning: the variable 'bias_ih' is copy-constructed from a const reference but is only used as const reference; consider making it a const reference [performance-unnecessary-copy-initialization]
60 | auto bias_ih = lstm_biases_ih[i];
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:61:14: warning: the variable 'bias_hh' is copy-constructed from a const reference but is only used as const reference; consider making it a const reference [performance-unnecessary-copy-initialization]
61 | auto bias_hh = lstm_biases_hh[i];
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:82:46: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int64_t' (aka 'long') is implementation-defined [bugprone-narrowing-conversions]
82 | torch::Tensor h_slice = hn.narrow(0, i, 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:83:46: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int64_t' (aka 'long') is implementation-defined [bugprone-narrowing-conversions]
83 | torch::Tensor c_slice = cn.narrow(0, i, 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:100:47: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int64_t' (aka 'long') is implementation-defined [bugprone-narrowing-conversions]
100 | torch::Tensor h_target = hn.narrow(0, i, 1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250204_optimize_b10_s4_e0_sweep/level_3/task_36/b9_s2_optimized_ltsmh_coalesced/base/base.cu:101:47: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int64_t' (aka 'long') is implementation-defined [bugprone-narrowing-conversions]
101 | torch::Tensor c_target = cn.narrow(0, i, 1);
| ^