← Back to Leaderboard

The AI CUDA Engineer 👷

12_Matmul_with_diagonal_matrices_hybrid_diag_matmul_base

Level 1 • Task 12
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(A, B):
    """
    Performs a matrix multiplication of a diagonal matrix with another matrix.

    Args:
        A (torch.Tensor): A 1D tensor representing the diagonal of the diagonal matrix. Shape: (N,).
        B (torch.Tensor): A 2D tensor representing the second matrix. Shape: (N, M).

    Returns:
        torch.Tensor: The result of the matrix multiplication. Shape: (N, M).
    """
    return torch.diag(A) @ B


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication of a diagonal matrix with another matrix.
    C = diag(A) * B
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, A, B, fn=module_fn):
        return fn(A, B)


M = 4096
N = 4096


def get_inputs():
    A = torch.randn(N)
    B = torch.randn(N, M)
    return [A, B]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication of a diagonal matrix with another matrix.
    C = diag(A) * B
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, A, B):
        """
        Performs the matrix multiplication.

        Args:
            A (torch.Tensor): A 1D tensor representing the diagonal of the diagonal matrix. Shape: (N,).
            B (torch.Tensor): A 2D tensor representing the second matrix. Shape: (N, M).

        Returns:
            torch.Tensor: The result of the matrix multiplication. Shape: (N, M).
        """
        return torch.diag(A) @ B

M = 4096
N = 4096

def get_inputs():
    A = torch.randn(N)
    B = torch.randn(N, M)
    return [A, B]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 12 • 12_Matmul_with_diagonal_matrices_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 flat_no_atomic_diag_matmul_base 0.05 54.40 55.46
🥇 shared_mem_diag_matmul_base_base 0.05 54.40 55.46
🥇 hybrid_diag_matmul_base 0.05 54.40 55.46
🥇 adaptive_diag_matmul_base 0.05 54.40 55.46
🥇 optimized_block_size_diag_matmul_base 0.05 54.40 55.46
🥇 hybrid_diag_matmul_base 0.05 54.40 55.46
🥇 adaptive_diag_matmul_base 0.05 54.40 55.46
🥇 diag_matmul_modular_edit_1 0.05 54.40 55.46
🥇 diag_matmul_warp_sync_base 0.05 54.40 55.46
🥇 diag_matmul_shared_min_sync_edit_1 0.05 54.40 55.46
🥇 diag_matmul_readonly_base 0.05 54.40 55.46
🥇 diag_matmul_modular_base 0.05 54.40 55.46
🥇 diag_matmul_shared_min_sync_base 0.05 54.40 55.46
🥇 stride_loop_diag_matmul_base 0.05 54.40 55.46
🥇 shared_memory_optimized_diag_matmul_base 0.05 54.40 55.46
🥇 unified_diag_matmul_base 0.05 54.40 55.46
🥇 diag_matmul_modular_base 0.05 54.40 55.46
🥇 adaptive_diag_matmul_edit_1 0.05 54.40 55.46
19 coalesced_diag_matmul_base 0.05 53.35 54.39
19 diag_matmul_readonly_edit_1 0.05 53.35 54.39
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void hybrid_diag_matmul_kernel(
    const float* __restrict__ A,
    const float* __restrict__ B,
    float* __restrict__ C,
    const int64_t N,
    const int64_t M,
    const bool use_vectorized
) {
    if (use_vectorized) {
        // Vectorized approach for large matrices where M is divisible by 4
        const int tid = threadIdx.x + blockIdx.x * blockDim.x;
        const int stride = blockDim.x * gridDim.x;
        const int total = N * M;
        const int vec_total = total / 4;
        
        const float4* B_vec = reinterpret_cast<const float4*>(B);
        float4* C_vec = reinterpret_cast<float4*>(C);
        
        for (int idx = tid; idx < vec_total; idx += stride) {
            const int base_idx = idx * 4;
            const int row = base_idx / M;
            const float a_val = A[row];
            
            float4 b_val = B_vec[idx];
            float4 c_val;
            c_val.x = a_val * b_val.x;
            c_val.y = a_val * b_val.y;
            c_val.z = a_val * b_val.z;
            c_val.w = a_val * b_val.w;
            
            C_vec[idx] = c_val;
        }
    } else {
        // Row-based approach for smaller matrices or when M is not divisible by 4
        int row = blockIdx.x;
        if (row < N) {
            float a_val = A[row];
            const int main_end = (M / blockDim.x) * blockDim.x;
            
            // Main loop with coalesced access
            for (int j = threadIdx.x; j < main_end; j += blockDim.x) {
                int idx = row * M + j;
                C[idx] = a_val * B[idx];
            }
            
            // Handle remaining elements
            for (int j = main_end + threadIdx.x; j < M; j += blockDim.x) {
                int idx = row * M + j;
                C[idx] = a_val * B[idx];
            }
        }
    }
}

at::Tensor forward(at::Tensor A, at::Tensor B) {
    TORCH_CHECK(A.dim() == 1, "A must be a 1D tensor");
    TORCH_CHECK(B.dim() == 2, "B must be a 2D tensor");
    TORCH_CHECK(A.size(0) == B.size(0), "Dimension mismatch");

    A = A.contiguous();
    B = B.contiguous();

    int64_t N = A.size(0);
    int64_t M = B.size(1);
    auto C = torch::empty({N, M}, B.options());

    // Choose approach based on matrix size and alignment
    bool use_vectorized = (M >= 512) && (M % 4 == 0);
    
    if (use_vectorized) {
        const int threads = 256;
        const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
        hybrid_diag_matmul_kernel<<<blocks, threads>>>(
            A.data_ptr<float>(), B.data_ptr<float>(), C.data_ptr<float>(),
            N, M, true);
    } else {
        int threads = (M > 256) ? 256 : (((M + 31) / 32) * 32);
        dim3 grid(N);
        hybrid_diag_matmul_kernel<<<grid, threads>>>(
            A.data_ptr<float>(), B.data_ptr<float>(), C.data_ptr<float>(),
            N, M, false);
    }

    return C;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Hybrid diagonal matrix multiplication");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.630 inst/cycle 0.000 5
Executed Ipc Elapsed 1.498 inst/cycle 0.000 5
Issue Slots Busy 40.846 % 0.029 5
Issued Ipc Active 1.630 inst/cycle 0.000 5
SM Busy 40.846 % 0.029 5
Memory Throughput 2670907328523.448 byte/second 165924245620803633152.000 5
Mem Busy 46.770 % 0.058 5
Max Bandwidth 79.728 % 0.143 5
L1/TEX Hit Rate 2.698 % 0.000 5
L2 Hit Rate 49.912 % 0.009 5
Mem Pipes Busy 26.574 % 0.015 5
Warp Cycles Per Issued Instruction 31.908 cycle 0.263 5
Warp Cycles Per Executed Instruction 32.024 cycle 0.268 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.240 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 80.928 % 0.046 5
Achieved Active Warps Per SM 51.792 warp 0.019 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (23.9%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (80.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 3487758.23 μs
Device Time 7117.72 μs
Self CPU Time 57.11 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 3487701.12 μs
Device Time 7117.72 μs
Self CPU Time 153.97 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 3480111.21 μs
Device Time 0.00 μs
Self CPU Time 170.57 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 3410133.21 μs
Device Time 0.00 μs
Self CPU Time 3410133.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 124359.25 μs
Device Time 860.70 μs
Self CPU Time 124359.25 μs
Self Device Time 860.70 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
hybrid_diag_matmul_kernel(float const*, float const*, float*, long, long, bool)
CPU Time 0.00 μs
Device Time 23141.37 μs
Self CPU Time 0.00 μs
Self Device Time 23141.37 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 112366.26 μs
Device Time 37868.82 μs
Self CPU Time 704.42 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 111662.71 μs
Device Time 37868.82 μs
Self CPU Time 929.91 μs
Self Device Time 37868.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 37868.82 μs
Self CPU Time 0.00 μs
Self Device Time 37868.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Failed
45256 warnings and 1 error generated when compiling for host.
Error while processing /home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu.
Suppressed 45287 warnings (45240 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
Found compiler error(s).
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:6:5 bugprone-easily-swappable-parameters
6 | const float* __restrict__ A,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 | const float* __restrict__ B,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:6:31: note: the first parameter in the range is 'A'
6 | const float* __restrict__ A,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:7:31: note: the last parameter in the range is 'B'
7 | const float* __restrict__ B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:15:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
15 | const int tid = threadIdx.x + blockIdx.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:16:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:17:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | const int total = N * M;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:25:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | const int row = base_idx / M;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:39:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | int row = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:42:34: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
42 | const int main_end = (M / blockDim.x) * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:45:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
45 | for (int j = threadIdx.x; j < main_end; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:45:58: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
45 | for (int j = threadIdx.x; j < main_end; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:46:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
46 | int idx = row * M + j;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:51:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
51 | for (int j = main_end + threadIdx.x; j < M; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:51:62: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
51 | for (int j = main_end + threadIdx.x; j < M; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:52:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | int idx = row * M + j;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:28: error: no matching function for call to 'min' [clang-diagnostic-error]
76 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^~~
/home/common_modules/clang-tidy/20.0.0git/lib/clang/20/include/__clang_cuda_math.h:201:16: note: candidate function not viable: call to __device__ function from __host__ function
201 | __DEVICE__ int min(int __a, int __b) { return __nv_min(__a, __b); }
| ^
/usr/local/cuda/include/crt/math_functions.hpp:868:38: note: candidate function not viable: call to __device__ function from __host__ function
868 | __MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const unsigned int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:873:38: note: candidate function not viable: call to __device__ function from __host__ function
873 | __MATH_FUNCTIONS_DECL__ unsigned int min(const int a, const unsigned int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:878:38: note: candidate function not viable: call to __device__ function from __host__ function
878 | __MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:883:34: note: candidate function not viable: call to __device__ function from __host__ function
883 | __MATH_FUNCTIONS_DECL__ long int min(const long int a, const long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:902:43: note: candidate function not viable: call to __device__ function from __host__ function
902 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const unsigned long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:919:43: note: candidate function not viable: call to __device__ function from __host__ function
919 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const long int a, const unsigned long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:936:43: note: candidate function not viable: call to __device__ function from __host__ function
936 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:953:39: note: candidate function not viable: call to __device__ function from __host__ function
953 | __MATH_FUNCTIONS_DECL__ long long int min(const long long int a, const long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:958:48: note: candidate function not viable: call to __device__ function from __host__ function
958 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const unsigned long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:963:48: note: candidate function not viable: call to __device__ function from __host__ function
963 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const long long int a, const unsigned long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:968:48: note: candidate function not viable: call to __device__ function from __host__ function
968 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:973:31: note: candidate function not viable: call to __device__ function from __host__ function
973 | __MATH_FUNCTIONS_DECL__ float min(const float a, const float b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:978:32: note: candidate function not viable: call to __device__ function from __host__ function
978 | __MATH_FUNCTIONS_DECL__ double min(const double a, const double b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:983:32: note: candidate function not viable: call to __device__ function from __host__ function
983 | __MATH_FUNCTIONS_DECL__ double min(const float a, const double b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:988:32: note: candidate function not viable: call to __device__ function from __host__ function
988 | __MATH_FUNCTIONS_DECL__ double min(const double a, const float b)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:54: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
76 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:54: note: make conversion explicit to silence this warning
76 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:54: note: perform multiplication in a wider type
76 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:74: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
76 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:74: note: make conversion explicit to silence this warning
4 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:76:74: note: perform multiplication in a wider type
76 | const int blocks = min(65535, (int)((N * M + threads * 4 - 1) / (threads * 4)));
| ^~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b4_s3_hybrid_diag_matmul/base/base.cu:81:41: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | int threads = (M > 256) ? 256 : (((M + 31) / 32) * 32);
| ^