← Back to Leaderboard

The AI CUDA Engineer 👷

12_Matmul_with_diagonal_matrices_adaptive_diag_matmul_base

Level 1 • Task 12
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(A, B):
    """
    Performs a matrix multiplication of a diagonal matrix with another matrix.

    Args:
        A (torch.Tensor): A 1D tensor representing the diagonal of the diagonal matrix. Shape: (N,).
        B (torch.Tensor): A 2D tensor representing the second matrix. Shape: (N, M).

    Returns:
        torch.Tensor: The result of the matrix multiplication. Shape: (N, M).
    """
    return torch.diag(A) @ B


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication of a diagonal matrix with another matrix.
    C = diag(A) * B
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, A, B, fn=module_fn):
        return fn(A, B)


M = 4096
N = 4096


def get_inputs():
    A = torch.randn(N)
    B = torch.randn(N, M)
    return [A, B]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication of a diagonal matrix with another matrix.
    C = diag(A) * B
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, A, B):
        """
        Performs the matrix multiplication.

        Args:
            A (torch.Tensor): A 1D tensor representing the diagonal of the diagonal matrix. Shape: (N,).
            B (torch.Tensor): A 2D tensor representing the second matrix. Shape: (N, M).

        Returns:
            torch.Tensor: The result of the matrix multiplication. Shape: (N, M).
        """
        return torch.diag(A) @ B

M = 4096
N = 4096

def get_inputs():
    A = torch.randn(N)
    B = torch.randn(N, M)
    return [A, B]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 12 • 12_Matmul_with_diagonal_matrices_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 flat_no_atomic_diag_matmul_base 0.05 54.40 55.46
🥇 shared_mem_diag_matmul_base_base 0.05 54.40 55.46
🥇 hybrid_diag_matmul_base 0.05 54.40 55.46
🥇 adaptive_diag_matmul_base 0.05 54.40 55.46
🥇 optimized_block_size_diag_matmul_base 0.05 54.40 55.46
🥇 hybrid_diag_matmul_base 0.05 54.40 55.46
🥇 adaptive_diag_matmul_base 0.05 54.40 55.46
🥇 diag_matmul_modular_edit_1 0.05 54.40 55.46
🥇 diag_matmul_warp_sync_base 0.05 54.40 55.46
🥇 diag_matmul_shared_min_sync_edit_1 0.05 54.40 55.46
🥇 diag_matmul_readonly_base 0.05 54.40 55.46
🥇 diag_matmul_modular_base 0.05 54.40 55.46
🥇 diag_matmul_shared_min_sync_base 0.05 54.40 55.46
🥇 stride_loop_diag_matmul_base 0.05 54.40 55.46
🥇 shared_memory_optimized_diag_matmul_base 0.05 54.40 55.46
🥇 unified_diag_matmul_base 0.05 54.40 55.46
🥇 diag_matmul_modular_base 0.05 54.40 55.46
🥇 adaptive_diag_matmul_edit_1 0.05 54.40 55.46
19 coalesced_diag_matmul_base 0.05 53.35 54.39
19 diag_matmul_readonly_edit_1 0.05 53.35 54.39
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Optimized kernel combining vectorized and row-based approaches
__global__ void adaptive_diag_matmul_kernel(
    const float* __restrict__ A,
    const float* __restrict__ B,
    float* __restrict__ C,
    const int64_t N,
    const int64_t M,
    const int64_t strategy  // 0: vectorized, 1: row-based small, 2: flat scalar
) {
    if (strategy == 0) {
        // Vectorized approach for large aligned matrices
        const int tid = threadIdx.x + blockIdx.x * blockDim.x;
        const int stride = blockDim.x * gridDim.x;
        const int vec_total = (N * M) / 4;
        
        const float4* B_vec = reinterpret_cast<const float4*>(B);
        float4* C_vec = reinterpret_cast<float4*>(C);
        
        for (int idx = tid; idx < vec_total; idx += stride) {
            const int base_idx = idx * 4;
            const int row = base_idx / M;
            const float a_val = A[row];
            
            float4 b_val = B_vec[idx];
            float4 c_val;
            c_val.x = a_val * b_val.x;
            c_val.y = a_val * b_val.y;
            c_val.z = a_val * b_val.z;
            c_val.w = a_val * b_val.w;
            
            C_vec[idx] = c_val;
        }
    } 
    else if (strategy == 1) {
        // Row-based approach for smaller matrices
        int row = blockIdx.x;
        if (row < N) {
            float a_val = A[row];
            
            // Use shared memory for frequently accessed a_val
            __shared__ float shared_a;
            if (threadIdx.x == 0) shared_a = a_val;
            __syncthreads();
            
            const int main_end = (M / blockDim.x) * blockDim.x;
            
            // Coalesced main loop with vectorized loads where possible
            for (int j = threadIdx.x; j < main_end; j += blockDim.x) {
                int idx = row * M + j;
                C[idx] = shared_a * B[idx];
            }
            
            // Handle remaining elements
            for (int j = main_end + threadIdx.x; j < M; j += blockDim.x) {
                int idx = row * M + j;
                C[idx] = shared_a * B[idx];
            }
        }
    }
    else {
        // Flat scalar approach for medium-sized or unaligned matrices
        int idx = blockIdx.x * blockDim.x + threadIdx.x;
        int stride = blockDim.x * gridDim.x;
        const int total = N * M;
        
        for (; idx < total; idx += stride) {
            int row = idx / M;
            C[idx] = A[row] * B[idx];
        }
    }
}

at::Tensor forward(at::Tensor A, at::Tensor B) {
    TORCH_CHECK(A.dim() == 1, "A must be a 1D tensor");
    TORCH_CHECK(B.dim() == 2, "B must be a 2D tensor");
    TORCH_CHECK(A.size(0) == B.size(0), "Dimension mismatch");

    A = A.contiguous();
    B = B.contiguous();

    int64_t N = A.size(0);
    int64_t M = B.size(1);
    auto C = torch::empty({N, M}, B.options());

    // Adaptive strategy selection based on matrix characteristics
    int strategy;
    dim3 blocks, threads;
    
    if (M >= 512 && M % 4 == 0) {
        // Large aligned matrices: use vectorized approach
        strategy = 0;
        threads = dim3(256);
        blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
    }
    else if (N <= 256 && M <= 1024) {
        // Small matrices: use row-based approach
        strategy = 1;
        threads = dim3(min(256, (int)(((M + 31) / 32) * 32)));
        blocks = dim3(N);
    }
    else {
        // Medium or unaligned matrices: use flat scalar approach
        strategy = 2;
        threads = dim3(256);
        blocks = dim3((N * M + threads.x - 1) / threads.x);
    }

    adaptive_diag_matmul_kernel<<<blocks, threads>>>(
        A.data_ptr<float>(), B.data_ptr<float>(), C.data_ptr<float>(),
        N, M, strategy);

    return C;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Adaptive diagonal matrix multiplication");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.672 inst/cycle 0.000 5
Executed Ipc Elapsed 1.552 inst/cycle 0.000 5
Issue Slots Busy 41.884 % 0.231 5
Issued Ipc Active 1.678 inst/cycle 0.000 5
SM Busy 41.884 % 0.231 5
Memory Throughput 2671227798255.480 byte/second 557199569810895273984.000 5
Mem Busy 46.706 % 0.185 5
Max Bandwidth 79.746 % 0.492 5
L1/TEX Hit Rate 2.696 % 0.000 5
L2 Hit Rate 49.986 % 0.006 5
Mem Pipes Busy 29.386 % 0.069 5
Warp Cycles Per Issued Instruction 30.244 cycle 0.016 5
Warp Cycles Per Executed Instruction 30.274 cycle 0.016 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.680 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 81.254 % 0.122 5
Achieved Active Warps Per SM 52.002 warp 0.050 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (24.3%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (80.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 659324.73 μs
Device Time 7098.48 μs
Self CPU Time 45.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 659279.61 μs
Device Time 7098.48 μs
Self CPU Time 118.02 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 651779.84 μs
Device Time 0.00 μs
Self CPU Time 102.02 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 620513.23 μs
Device Time 0.00 μs
Self CPU Time 620513.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 730825.79 μs
Device Time 19947.30 μs
Self CPU Time 730825.79 μs
Self Device Time 19947.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
adaptive_diag_matmul_kernel(float const*, float const*, float*, long, long, long)
CPU Time 0.00 μs
Device Time 336699.72 μs
Self CPU Time 0.00 μs
Self Device Time 336699.72 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 19604.79 μs
Device Time 37010.56 μs
Self CPU Time 19604.79 μs
Self Device Time 37010.56 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 295589.50 μs
Device Time 554876.64 μs
Self CPU Time 11646.73 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 283944.66 μs
Device Time 554876.64 μs
Self CPU Time 14379.71 μs
Self Device Time 554876.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 554955.13 μs
Self CPU Time 0.00 μs
Self Device Time 554955.13 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Failed
45259 warnings and 2 errors generated when compiling for host.
Error while processing /home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu.
Suppressed 45287 warnings (45240 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
Found compiler error(s).
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:11:5 bugprone-easily-swappable-parameters
11 | const int64_t M,
| ^~~~~~~~~~~~~~~~
12 | const int64_t strategy // 0: vectorized, 1: row-based small, 2: flat scalar
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:11:19: note: the first parameter in the range is 'M'
11 | const int64_t M,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:12:19: note: the last parameter in the range is 'strategy'
12 | const int64_t strategy // 0: vectorized, 1: row-based small, 2: flat scalar
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:16:25: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
16 | const int tid = threadIdx.x + blockIdx.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:17:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
17 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:18:31: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | const int vec_total = (N * M) / 4;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:25:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | const int row = base_idx / M;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:40:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | int row = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:49:34: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | const int main_end = (M / blockDim.x) * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:52:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | for (int j = threadIdx.x; j < main_end; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:52:58: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | for (int j = threadIdx.x; j < main_end; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:53:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
53 | int idx = row * M + j;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:58:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | for (int j = main_end + threadIdx.x; j < M; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:58:62: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | for (int j = main_end + threadIdx.x; j < M; j += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:59:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int idx = row * M + j;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:66:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
66 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:67:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
67 | int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:68:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
68 | const int total = N * M;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:71:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | int row = idx / M;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:23: error: no matching function for call to 'min' [clang-diagnostic-error]
97 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^~~
/home/common_modules/clang-tidy/20.0.0git/lib/clang/20/include/__clang_cuda_math.h:201:16: note: candidate function not viable: call to __device__ function from __host__ function
201 | __DEVICE__ int min(int __a, int __b) { return __nv_min(__a, __b); }
| ^
/usr/local/cuda/include/crt/math_functions.hpp:868:38: note: candidate function not viable: call to __device__ function from __host__ function
868 | __MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const unsigned int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:873:38: note: candidate function not viable: call to __device__ function from __host__ function
873 | __MATH_FUNCTIONS_DECL__ unsigned int min(const int a, const unsigned int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:878:38: note: candidate function not viable: call to __device__ function from __host__ function
878 | __MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:883:34: note: candidate function not viable: call to __device__ function from __host__ function
883 | __MATH_FUNCTIONS_DECL__ long int min(const long int a, const long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:902:43: note: candidate function not viable: call to __device__ function from __host__ function
902 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const unsigned long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:919:43: note: candidate function not viable: call to __device__ function from __host__ function
919 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const long int a, const unsigned long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:936:43: note: candidate function not viable: call to __device__ function from __host__ function
936 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:953:39: note: candidate function not viable: call to __device__ function from __host__ function
953 | __MATH_FUNCTIONS_DECL__ long long int min(const long long int a, const long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:958:48: note: candidate function not viable: call to __device__ function from __host__ function
958 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const unsigned long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:963:48: note: candidate function not viable: call to __device__ function from __host__ function
963 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const long long int a, const unsigned long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:968:48: note: candidate function not viable: call to __device__ function from __host__ function
968 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:973:31: note: candidate function not viable: call to __device__ function from __host__ function
973 | __MATH_FUNCTIONS_DECL__ float min(const float a, const float b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:978:32: note: candidate function not viable: call to __device__ function from __host__ function
978 | __MATH_FUNCTIONS_DECL__ double min(const double a, const double b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:983:32: note: candidate function not viable: call to __device__ function from __host__ function
983 | __MATH_FUNCTIONS_DECL__ double min(const float a, const double b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:988:32: note: candidate function not viable: call to __device__ function from __host__ function
988 | __MATH_FUNCTIONS_DECL__ double min(const double a, const float b)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:49: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'unsigned int' [bugprone-implicit-widening-of-multiplication-result]
97 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:49: note: make conversion explicit to silence this warning
97 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^~~~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:49: note: perform multiplication in a wider type
97 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:71: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'unsigned int' [bugprone-implicit-widening-of-multiplication-result]
97 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:71: note: make conversion explicit to silence this warning
4 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^~~~~~~~~~~~~
| static_cast<int64_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:97:71: note: perform multiplication in a wider type
97 | blocks = dim3(min(65535, (int)((N * M + threads.x * 4 - 1) / (threads.x * 4))));
| ^~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_12/b8_s2_adaptive_diag_matmul/base/base.cu:102:24: error: no matching function for call to 'min' [clang-diagnostic-error]
102 | threads = dim3(min(256, (int)(((M + 31) / 32) * 32)));
| ^~~
/home/common_modules/clang-tidy/20.0.0git/lib/clang/20/include/__clang_cuda_math.h:201:16: note: candidate function not viable: call to __device__ function from __host__ function
201 | __DEVICE__ int min(int __a, int __b) { return __nv_min(__a, __b); }
| ^
/usr/local/cuda/include/crt/math_functions.hpp:868:38: note: candidate function not viable: call to __device__ function from __host__ function
868 | __MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const unsigned int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:873:38: note: candidate function not viable: call to __device__ function from __host__ function
873 | __MATH_FUNCTIONS_DECL__ unsigned int min(const int a, const unsigned int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:878:38: note: candidate function not viable: call to __device__ function from __host__ function
878 | __MATH_FUNCTIONS_DECL__ unsigned int min(const unsigned int a, const int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:883:34: note: candidate function not viable: call to __device__ function from __host__ function
883 | __MATH_FUNCTIONS_DECL__ long int min(const long int a, const long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:902:43: note: candidate function not viable: call to __device__ function from __host__ function
902 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const unsigned long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:919:43: note: candidate function not viable: call to __device__ function from __host__ function
919 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const long int a, const unsigned long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:936:43: note: candidate function not viable: call to __device__ function from __host__ function
936 | __MATH_FUNCTIONS_DECL__ unsigned long int min(const unsigned long int a, const long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:953:39: note: candidate function not viable: call to __device__ function from __host__ function
953 | __MATH_FUNCTIONS_DECL__ long long int min(const long long int a, const long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:958:48: note: candidate function not viable: call to __device__ function from __host__ function
958 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const unsigned long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:963:48: note: candidate function not viable: call to __device__ function from __host__ function
963 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const long long int a, const unsigned long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:968:48: note: candidate function not viable: call to __device__ function from __host__ function
968 | __MATH_FUNCTIONS_DECL__ unsigned long long int min(const unsigned long long int a, const long long int b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:973:31: note: candidate function not viable: call to __device__ function from __host__ function
973 | __MATH_FUNCTIONS_DECL__ float min(const float a, const float b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:978:32: note: candidate function not viable: call to __device__ function from __host__ function
978 | __MATH_FUNCTIONS_DECL__ double min(const double a, const double b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:983:32: note: candidate function not viable: call to __device__ function from __host__ function
983 | __MATH_FUNCTIONS_DECL__ double min(const float a, const double b)
| ^
/usr/local/cuda/include/crt/math_functions.hpp:988:32: note: candidate function not viable: call to __device__ function from __host__ function
988 | __MATH_FUNCTIONS_DECL__ double min(const double a, const float b)
| ^