16_Matmul_with_transposed_A
• tiled_shared_unroll_base_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
Performs a single matrix multiplication with transposed A (C = A.T * B).
Args:
A: Input tensor of shape (K, M).
B: Input tensor of shape (K, N).
Returns:
Output tensor of shape (M, N).
"""
return torch.matmul(A.T, B)
class Model(nn.Module):
"""
Simple model that performs a single matrix multiplication (C = A * B)
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, A: torch.Tensor, B: torch.Tensor, fn=module_fn) -> torch.Tensor:
return fn(A, B)
M = 1024
K = 4096
N = 2048
def get_inputs():
A = torch.randn(K, M)
B = torch.randn(K, N)
return [A, B]
def get_init_inputs():
return [] # No special initialization inputs needed
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs a single matrix multiplication (C = A * B)
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
Performs matrix multiplication.
Args:
A: Input tensor of shape (M, K).
B: Input tensor of shape (K, N).
Returns:
Output tensor of shape (M, N).
"""
return torch.matmul(A.T, B)
M = 1024
K = 4096
N = 2048
def get_inputs():
A = torch.randn(K, M)
B = torch.randn(K, N)
return [A, B]
def get_init_inputs():
return [] # No special initialization inputs needed
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdexcept>
// Tile dimensions and unroll factor
#define TILE_M 16
#define TILE_N 16
#define BLOCK_K 32
// Kernel to compute C = A.T * B using tiled shared memory with loop unrolling
// A: shape (K, M), B: shape (K, N), C: shape (M, N) computed as C[i, j] = sum_{k=0}^{K-1} A[k*M + i] * B[k*N + j]
__global__ void tiledSharedUnrollKernel(const float* __restrict__ A,
const float* __restrict__ B,
float* __restrict__ C,
int K, int M, int N) {
// Global row and column indices for C
int row = blockIdx.x * TILE_M + threadIdx.x; // corresponds to index i
int col = blockIdx.y * TILE_N + threadIdx.y; // corresponds to index j
float sum = 0.0f;
// Allocate shared memory for a tile of A and B
// As: stores a tile of A for current k-chunk. Dimensions: BLOCK_K x TILE_M
// Bs: stores a tile of B for current k-chunk. Dimensions: BLOCK_K x TILE_N
__shared__ float As[BLOCK_K][TILE_M];
__shared__ float Bs[BLOCK_K][TILE_N];
// Loop over k dimension in increments of BLOCK_K
for (int k0 = 0; k0 < K; k0 += BLOCK_K) {
// Each block needs to load BLOCK_K * TILE_M elements for A and BLOCK_K * TILE_N elements for B
int tid = threadIdx.y * blockDim.x + threadIdx.x; // Unique thread index within the block
int totalThreads = blockDim.x * blockDim.y; // should be TILE_M * TILE_N
// Load tile of A into shared memory
// A is stored in row-major order with shape (K, M): element A[k, i] is at A[k * M + i]
for (int index = tid; index < BLOCK_K * TILE_M; index += totalThreads) {
int t = index / TILE_M; // local k index within the tile
int i = index % TILE_M; // local i index within the tile
int global_i = blockIdx.x * TILE_M + i;
int global_k = k0 + t;
if (global_i < M && global_k < K)
As[t][i] = A[global_k * M + global_i];
else
As[t][i] = 0.0f;
}
// Load tile of B into shared memory
// B is stored in row-major order with shape (K, N): element B[k, j] is at B[k * N + j]
for (int index = tid; index < BLOCK_K * TILE_N; index += totalThreads) {
int t = index / TILE_N; // local k index within the tile
int j = index % TILE_N; // local j index within the tile
int global_j = blockIdx.y * TILE_N + j;
int global_k = k0 + t;
if (global_j < N && global_k < K)
Bs[t][j] = B[global_k * N + global_j];
else
Bs[t][j] = 0.0f;
}
__syncthreads(); // Ensure the shared memory tiles are loaded before computation
// Compute the partial dot product for this k-chunk using loop unrolling
#pragma unroll
for (int t = 0; t < BLOCK_K; t += 4) {
sum += As[t][threadIdx.x] * Bs[t][threadIdx.y];
if (t + 1 < BLOCK_K) sum += As[t + 1][threadIdx.x] * Bs[t + 1][threadIdx.y];
if (t + 2 < BLOCK_K) sum += As[t + 2][threadIdx.x] * Bs[t + 2][threadIdx.y];
if (t + 3 < BLOCK_K) sum += As[t + 3][threadIdx.x] * Bs[t + 3][threadIdx.y];
}
__syncthreads(); // Synchronize before loading the next tile
}
// Write the result to global memory if within bounds
if (row < M && col < N) {
C[row * N + col] = sum;
}
}
// PyBind11 forward function exposed to Python
// A: Tensor of shape (K, M) [CUDA, float32]
// B: Tensor of shape (K, N) [CUDA, float32]
// Returns: C, Tensor of shape (M, N) computed as C = A.T * B
torch::Tensor forward(torch::Tensor A, torch::Tensor B) {
TORCH_CHECK(A.is_cuda(), "Input A must be a CUDA tensor");
TORCH_CHECK(B.is_cuda(), "Input B must be a CUDA tensor");
TORCH_CHECK(A.dtype() == torch::kFloat32, "Input A must be float32");
TORCH_CHECK(B.dtype() == torch::kFloat32, "Input B must be float32");
int K = A.size(0);
int M = A.size(1);
TORCH_CHECK(B.size(0) == K, "Dimension mismatch: A and B must have the same first dimension (K)");
int N = B.size(1);
auto C = torch::zeros({M, N}, torch::device(A.device()).dtype(A.dtype()));
// Define block and grid dimensions
dim3 block(TILE_M, TILE_N); // 16x16 threads per block
dim3 grid((M + TILE_M - 1) / TILE_M,
(N + TILE_N - 1) / TILE_N);
const float* A_ptr = A.data_ptr<float>();
const float* B_ptr = B.data_ptr<float>();
float* C_ptr = C.data_ptr<float>();
// Launch the kernel
tiledSharedUnrollKernel<<<grid, block>>>(A_ptr, B_ptr, C_ptr, K, M, N);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
throw std::runtime_error(cudaGetErrorString(err));
}
return C;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Compute C = A.T * B using tiled shared memory with unrolling (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 2.250 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 2.236 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 56.204 | % | 0.000 | 5 |
Issued Ipc Active | 2.250 | inst/cycle | 0.000 | 5 |
SM Busy | 56.204 | % | 0.000 | 5 |
Memory Throughput | 16382770515.292 | byte/second | 4007460519725013.500 | 5 |
Mem Busy | 83.980 | % | 0.006 | 5 |
Max Bandwidth | 78.662 | % | 0.005 | 5 |
L1/TEX Hit Rate | 0.744 | % | 0.000 | 5 |
L2 Hit Rate | 97.220 | % | 0.063 | 5 |
Mem Pipes Busy | 78.662 | % | 0.005 | 5 |
Warp Cycles Per Issued Instruction | 20.602 | cycle | 0.000 | 5 |
Warp Cycles Per Executed Instruction | 20.602 | cycle | 0.000 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 30.430 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 6.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 12.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 48.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 75.000 | % | 0.000 | 5 |
Achieved Occupancy | 72.372 | % | 0.000 | 5 |
Achieved Active Warps Per SM | 46.316 | warp | 0.000 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
WRN Occupancy | This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 358647.27 | μs |
Device Time | 5003.68 | μs |
Self CPU Time | 43.85 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 9241925.35 | μs |
Device Time | 261803.42 | μs |
Self CPU Time | 12046.86 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 9229880.07 | μs |
Device Time | 261803.42 | μs |
Self CPU Time | 15994.66 | μs |
Self Device Time | 261803.42 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 9230128.21 | μs |
Device Time | 6758.47 | μs |
Self CPU Time | 9230128.21 | μs |
Self Device Time | 6758.47 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
tiledSharedUnrollKernel(float const*, float const*, float*, int, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 9721154.79 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 9721154.79 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceSynchronize | ||
CPU Time | 655355.11 | μs |
Device Time | 78.14 | μs |
Self CPU Time | 655355.11 | μs |
Self Device Time | 78.14 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 17462.30 | μs |
Device Time | 13602.13 | μs |
Self CPU Time | 17462.30 | μs |
Self Device Time | 13602.13 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 248717.13 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 248717.13 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45287 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.