16_Matmul_with_transposed_A
• hybrid_tiling_grid_stride_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
Performs a single matrix multiplication with transposed A (C = A.T * B).
Args:
A: Input tensor of shape (K, M).
B: Input tensor of shape (K, N).
Returns:
Output tensor of shape (M, N).
"""
return torch.matmul(A.T, B)
class Model(nn.Module):
"""
Simple model that performs a single matrix multiplication (C = A * B)
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, A: torch.Tensor, B: torch.Tensor, fn=module_fn) -> torch.Tensor:
return fn(A, B)
M = 1024
K = 4096
N = 2048
def get_inputs():
A = torch.randn(K, M)
B = torch.randn(K, N)
return [A, B]
def get_init_inputs():
return [] # No special initialization inputs needed
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs a single matrix multiplication (C = A * B)
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
Performs matrix multiplication.
Args:
A: Input tensor of shape (M, K).
B: Input tensor of shape (K, N).
Returns:
Output tensor of shape (M, N).
"""
return torch.matmul(A.T, B)
M = 1024
K = 4096
N = 2048
def get_inputs():
A = torch.randn(K, M)
B = torch.randn(K, N)
return [A, B]
def get_init_inputs():
return [] # No special initialization inputs needed
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdexcept>
#define TILE_M 16
#define TILE_N 16
#define BLOCK_K 32
__global__ void hybridKernel(const float* __restrict__ A,
const float* __restrict__ B,
float* __restrict__ C,
int K, int M, int N) {
int row = blockIdx.x * TILE_M + threadIdx.x;
int col = blockIdx.y * TILE_N + threadIdx.y;
float sum = 0.0f;
__shared__ float As[BLOCK_K][TILE_M];
__shared__ float Bs[BLOCK_K][TILE_N];
int tid = threadIdx.y * blockDim.x + threadIdx.x;
int totalThreads = blockDim.x * blockDim.y;
for (int k0 = 0; k0 < K; k0 += BLOCK_K) {
for (int index = tid; index < BLOCK_K * TILE_M; index += totalThreads) {
int t = index / TILE_M;
int m = index % TILE_M;
int global_k = k0 + t;
int global_m = blockIdx.x * TILE_M + m;
As[t][m] = (global_k < K && global_m < M) ? __ldg(&A[global_k * M + global_m]) : 0.0f;
}
for (int index = tid; index < BLOCK_K * TILE_N; index += totalThreads) {
int t = index / TILE_N;
int n = index % TILE_N;
int global_k = k0 + t;
int global_n = blockIdx.y * TILE_N + n;
Bs[t][n] = (global_k < K && global_n < N) ? __ldg(&B[global_k * N + global_n]) : 0.0f;
}
__syncthreads();
#pragma unroll
for (int t = 0; t < BLOCK_K; t++) {
sum += As[t][threadIdx.x] * Bs[t][threadIdx.y];
}
__syncthreads();
}
if (row < M && col < N) {
C[row * N + col] = sum;
}
}
torch::Tensor forward(torch::Tensor A, torch::Tensor B) {
TORCH_CHECK(A.is_cuda(), "Input A must be a CUDA tensor");
TORCH_CHECK(B.is_cuda(), "Input B must be a CUDA tensor");
TORCH_CHECK(A.dtype() == torch::kFloat32, "Input A must be float32");
TORCH_CHECK(B.dtype() == torch::kFloat32, "Input B must be float32");
int K = A.size(0);
int M = A.size(1);
TORCH_CHECK(B.size(0) == K, "Dimension mismatch: A and B must have the same first dimension (K)");
int N = B.size(1);
auto C = torch::zeros({M, N}, torch::device(A.device()).dtype(A.dtype()));
dim3 block(TILE_M, TILE_N);
dim3 grid((M + TILE_M - 1) / TILE_M, (N + TILE_N - 1) / TILE_N);
const float* A_ptr = A.data_ptr<float>();
const float* B_ptr = B.data_ptr<float>();
float* C_ptr = C.data_ptr<float>();
hybridKernel<<<grid, block>>>(A_ptr, B_ptr, C_ptr, K, M, N);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
throw std::runtime_error(cudaGetErrorString(err));
}
return C;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Compute C = A.T * B using a hybrid approach (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 2.260 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 2.240 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 56.586 | % | 0.000 | 5 |
Issued Ipc Active | 2.260 | inst/cycle | 0.000 | 5 |
SM Busy | 56.586 | % | 0.000 | 5 |
Memory Throughput | 17378226883.180 | byte/second | 2203532370847152.000 | 5 |
Mem Busy | 88.986 | % | 0.005 | 5 |
Max Bandwidth | 83.490 | % | 0.004 | 5 |
L1/TEX Hit Rate | 0.690 | % | 0.000 | 5 |
L2 Hit Rate | 97.018 | % | 0.125 | 5 |
Mem Pipes Busy | 83.490 | % | 0.004 | 5 |
Warp Cycles Per Issued Instruction | 26.892 | cycle | 0.000 | 5 |
Warp Cycles Per Executed Instruction | 26.892 | cycle | 0.000 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 31.500 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 20.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 95.102 | % | 0.000 | 5 |
Achieved Active Warps Per SM | 60.864 | warp | 0.000 | 5 |
Rule | Description |
---|---|
INF HighPipeUtilization | ALU is the highest-utilized pipeline (32.8%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck. |
INF Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 563853.44 | μs |
Device Time | 5092.35 | μs |
Self CPU Time | 41.17 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 9275463.04 | μs |
Device Time | 280858.04 | μs |
Self CPU Time | 13581.21 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 9261882.85 | μs |
Device Time | 280858.04 | μs |
Self CPU Time | 18306.97 | μs |
Self Device Time | 280858.04 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 9260609.23 | μs |
Device Time | 7313.44 | μs |
Self CPU Time | 9260609.23 | μs |
Self Device Time | 7313.44 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
hybridKernel(float const*, float const*, float*, int, int, int) | ||
CPU Time | 0.00 | μs |
Device Time | 9695895.19 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 9695895.19 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceSynchronize | ||
CPU Time | 609764.28 | μs |
Device Time | 77.67 | μs |
Self CPU Time | 609764.28 | μs |
Self Device Time | 77.67 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 17370.93 | μs |
Device Time | 14643.21 | μs |
Self CPU Time | 17370.93 | μs |
Self Device Time | 14643.21 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 267235.91 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 267235.91 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45287 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.