← Back to Leaderboard

The AI CUDA Engineer 👷

28_HardSigmoidwarp_broadcast_hardsigmoid_base

Level 1 • Task 28
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x: torch.Tensor) -> torch.Tensor:
    """
    Applies HardSigmoid activation to the input tensor.

    Args:
        x (torch.Tensor): Input tensor of any shape.

    Returns:
        torch.Tensor: Output tensor with HardSigmoid applied, same shape as input.
    """
    return F.hardsigmoid(x)


class Model(nn.Module):
    """
    Simple model that performs a HardSigmoid activation.
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies HardSigmoid activation to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of any shape.

        Returns:
            torch.Tensor: Output tensor with HardSigmoid applied, same shape as input.
        """
        return fn(x)


batch_size = 16
dim = 16384


def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a HardSigmoid activation.
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies HardSigmoid activation to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of any shape.

        Returns:
            torch.Tensor: Output tensor with HardSigmoid applied, same shape as input.
        """
        return torch.nn.functional.hardsigmoid(x)

batch_size = 16
dim = 16384

def get_inputs():
    x = torch.randn(batch_size, dim)
    return [x]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 28 • 28_HardSigmoid)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 hardsigmoid_warp_vectorized_base 0.01 1.12 4.96
🥇 hardsigmoid_shared_optimized_edit_1 0.01 1.12 4.96
🥇 hardsigmoid_unrolled_optimized_edit_1 0.01 1.12 4.96
🥇 hardsigmoid_unrolled_optimized_base 0.01 1.12 4.96
🥇 evenly_distributed_hardsigmoid_base 0.01 1.12 4.96
6 divergence_reduced_hardsigmoid_base_base 0.01 0.96 4.25
6 constant_mem_hardsigmoid_base 0.01 0.96 4.25
6 warp_hardsigmoid_opt_base 0.01 0.96 4.25
6 28_HardSigmoid 0.01 0.96 4.25
6 modular_hardsigmoid_base 0.01 0.96 4.25
6 modular_hardsigmoid_base 0.01 0.96 4.25
6 branchless_hardsigmoid_base 0.01 0.96 4.25
6 warp_optimized_hardsigmoid_base 0.01 0.96 4.25
6 optimized_hardsigmoid_base 0.01 0.96 4.25
6 warp_broadcast_hardsigmoid_base 0.01 0.96 4.25
6 vectorized_coalesced_hardsigmoid_base 0.01 0.96 4.25
6 vectorized_coalesced_hardsigmoid_base 0.01 0.96 4.25
6 shared_memory_hardsigmoid_base_base 0.01 0.96 4.25
6 warp_optimized_hardsigmoid_base 0.01 0.96 4.25
6 even_chunk_hardsigmoid_base 0.01 0.96 4.25
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <type_traits>

// Helper function to broadcast a value from a given lane in a warp
template <typename scalar_t>
__device__ inline scalar_t warp_broadcast(scalar_t val, int srcLane) {
    unsigned mask = 0xffffffff;
    if constexpr (std::is_same<scalar_t, float>::value) {
        return __shfl_sync(mask, val, srcLane);
    } else if constexpr (std::is_same<scalar_t, double>::value) {
        // For double, reinterpret as 64-bit integer
        long long int tmp = __double_as_longlong(val);
        tmp = __shfl_sync(mask, tmp, srcLane);
        return __longlong_as_double(tmp);
    }
}

// Clamp function for both float and double types
template <typename scalar_t>
__device__ inline scalar_t clamp_val(scalar_t x) {
    if constexpr (std::is_same<scalar_t, float>::value) {
        return fminf(fmaxf(x, 0.f), 1.f);
    } else {
        return fmin(fmax(x, 0.0), 1.0);
    }
}

// CUDA kernel that computes HardSigmoid using warp-level primitives
// for broadcasting constant values instead of reading them from shared memory
// y = clamp((x + 3) / 6, 0, 1)

template <typename scalar_t>
__global__ void warp_primitive_hardsigmoid_kernel(const scalar_t* __restrict__ input,
                                                   scalar_t* __restrict__ output,
                                                   size_t numel) {
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
    const int stride = blockDim.x * gridDim.x;
    
    // Each warp broadcasts constant values from lane 0
    scalar_t local_offset = static_cast<scalar_t>(3);
    scalar_t local_scale = static_cast<scalar_t>(1) / static_cast<scalar_t>(6);
    
    // Use warp-level broadcast to retrieve constants
    scalar_t offset = warp_broadcast<scalar_t>(local_offset, 0);
    scalar_t scale = warp_broadcast<scalar_t>(local_scale, 0);
    
    for (size_t i = idx; i < numel; i += stride) {
        scalar_t x = input[i];
        scalar_t y = (x + offset) * scale;
        y = clamp_val(y);
        output[i] = y;
    }
}

// Host function to launch the kernel

torch::Tensor forward(torch::Tensor input) {
    TORCH_CHECK(input.is_cuda(), "Input tensor must be on CUDA");
    auto output = torch::empty_like(input);
    size_t numel = input.numel();
    
    const int threads = 1024;
    const int blocks = (numel + threads - 1) / threads;
    
    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "warp_primitive_hardsigmoid_cuda", ([&] {
        warp_primitive_hardsigmoid_kernel<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            numel);
    }));
    
    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA kernel failed: ", cudaGetErrorString(err));
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "HardSigmoid activation forward (CUDA) using warp-level primitives");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.896 inst/cycle 0.003 5
Executed Ipc Elapsed 0.348 inst/cycle 0.000 5
Issue Slots Busy 24.858 % 2.300 5
Issued Ipc Active 0.994 inst/cycle 0.004 5
SM Busy 24.858 % 2.300 5
Memory Throughput 280902619282.548 byte/second 23078080172734046208.000 5
Mem Busy 13.356 % 0.068 5
Max Bandwidth 12.354 % 0.043 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 66.926 % 0.091 5
Mem Pipes Busy 7.406 % 0.018 5
Warp Cycles Per Issued Instruction 50.210 cycle 0.071 5
Warp Cycles Per Executed Instruction 55.796 cycle 0.088 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.060 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 4.000 block 0.000 5
Block Limit Shared Mem 8.000 block 0.000 5
Block Limit Warps 2.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 81.296 % 0.564 5
Achieved Active Warps Per SM 52.028 warp 0.232 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (80.8%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 660666.26 μs
Device Time 40.13 μs
Self CPU Time 48.67 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 660617.60 μs
Device Time 40.13 μs
Self CPU Time 110.45 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 679779.98 μs
Device Time 0.00 μs
Self CPU Time 19675.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 659641.49 μs
Device Time 0.00 μs
Self CPU Time 659641.49 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 487901.67 μs
Device Time 630.21 μs
Self CPU Time 487901.67 μs
Self Device Time 630.21 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void warp_primitive_hardsigmoid_kernel<float>(float const*, float*, unsigned long)
CPU Time 0.00 μs
Device Time 26817.46 μs
Self CPU Time 0.00 μs
Self Device Time 26817.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 22653.07 μs
Device Time 41312.59 μs
Self CPU Time 22653.07 μs
Self Device Time 41312.59 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 67554.39 μs
Device Time 632808.12 μs
Self CPU Time 11866.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 55689.42 μs
Device Time 632808.12 μs
Self CPU Time 15831.15 μs
Self Device Time 632808.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 632886.78 μs
Self CPU Time 0.00 μs
Self Device Time 632886.78 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45280 warnings generated when compiling for host.
Suppressed 45321 warnings (45274 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_28/b7_s0_warp_broadcast_hardsigmoid/base/base.cu:38:21 bugprone-narrowing-conversions
38 | const int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_28/b7_s0_warp_broadcast_hardsigmoid/base/base.cu:39:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | const int stride = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_28/b7_s0_warp_broadcast_hardsigmoid/base/base.cu:65:24: warning: narrowing conversion from 'size_t' (aka 'unsigned long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
65 | const int blocks = (numel + threads - 1) / threads;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_28/b7_s0_warp_broadcast_hardsigmoid/base/base.cu:67:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
67 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "warp_primitive_hardsigmoid_cuda", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^