← Back to Leaderboard

The AI CUDA Engineer 👷

40_LayerNormlayernorm_forward_opt_base

Level 1 • Task 40
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float = 1e-5
) -> torch.Tensor:
    """
    Functional implementation of LayerNorm.

    Args:
        x (torch.Tensor): Input tensor of shape (*, normalized_shape).
        weight (torch.Tensor): Weight tensor of shape (normalized_shape).
        bias (torch.Tensor): Bias tensor of shape (normalized_shape).
        eps (float): Epsilon parameter for numerical stability.

    Returns:
        torch.Tensor: Output tensor with Layer Normalization applied, same shape as input.
    """
    # Get the normalized shape from the weight tensor
    normalized_shape = tuple(x.shape[-len(weight.shape) :])
    return F.layer_norm(
        x, normalized_shape=normalized_shape, weight=weight, bias=bias, eps=eps
    )


class Model(nn.Module):
    """
    Simple model that performs Layer Normalization.
    """

    def __init__(self, normalized_shape: tuple):
        """
        Initializes the LayerNorm layer parameters.

        Args:
            normalized_shape (tuple): Shape of the input tensor to be normalized.
        """
        super(Model, self).__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies Layer Normalization to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (*, normalized_shape).
            fn: Function to apply (defaults to module_fn)

        Returns:
            torch.Tensor: Output tensor with Layer Normalization applied, same shape as input.
        """
        return fn(x, self.weight, self.bias)


batch_size = 16
features = 64
dim1 = 256
dim2 = 256


def get_inputs():
    x = torch.randn(batch_size, features, dim1, dim2)
    return [x]


def get_init_inputs():
    return [(features, dim1, dim2)]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs Layer Normalization.
    """
    def __init__(self, normalized_shape: tuple):
        """
        Initializes the LayerNorm layer.

        Args:
            normalized_shape (tuple): Shape of the input tensor to be normalized.
        """
        super(Model, self).__init__()
        self.ln = nn.LayerNorm(normalized_shape=normalized_shape)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies Layer Normalization to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (*, normalized_shape).

        Returns:
            torch.Tensor: Output tensor with Layer Normalization applied, same shape as input.
        """
        return self.ln(x)

batch_size = 16
features = 64
dim1 = 256
dim2 = 256

def get_inputs():
    x = torch.randn(batch_size, features, dim1, dim2)
    return [x]

def get_init_inputs():
    return [(features, dim1, dim2)]

Kernel Information

Related Kernels (Level 1, Task 40 • 40_LayerNorm)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_layernorm_streamed_base 0.94 8.60 0.70
🥈 layernorm_unrolled_base_base 1.01 7.99 0.65
🥉 layernorm_forward_optimized_base 1.02 7.94 0.65
4 layernorm_modular_base_base 1.02 7.91 0.65
5 layernorm_aligned_base_base 1.03 7.90 0.64
6 layernorm_forward_optimized_base 1.03 7.89 0.64
7 optimized_layernorm_2d_base 1.12 7.23 0.59
8 layernorm_vector8_aligned_base_base 1.24 6.53 0.53
9 optimized_layernorm_unrolled_base 1.63 4.96 0.40
10 optimized_layernorm_unrolled_edit_1 1.64 4.94 0.40
11 layernorm_ldg_optimized_base_edit_1 2.22 3.65 0.30
12 40_LayerNorm_stride_loops_edit_1 2.24 3.62 0.30
13 layernorm_hybrid_optimized_base 2.24 3.62 0.29
14 layernorm_ldg_optimized_base_base 2.24 3.61 0.29
15 layernorm_coalesced_base 3.26 2.49 0.20
16 layernorm_2d_indexing_base 3.26 2.48 0.20
17 optimized_layernorm_base 3.27 2.48 0.20
18 warp_shfl_layernorm_base 3.28 2.47 0.20
19 layernorm_forward_opt_base 3.28 2.47 0.20
20 layernorm_uniform_control_flow_base 3.28 2.47 0.20
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <ATen/AccumulateType.h>
#include <math.h>

// Optimized LayerNorm forward kernel that combines 2D thread indexing for improved parallelism
// with coalesced memory accesses for efficient global loads. Each block processes one instance
// of the input and performs a shared memory reduction to compute the mean and variance.

template <typename scalar_t>
__global__ void layernorm_forward_kernel_opt(
    const scalar_t* __restrict__ input,
    const scalar_t* __restrict__ weight,
    const scalar_t* __restrict__ bias,
    const float eps,
    scalar_t* __restrict__ output,
    const int normalized_size) {

  // Each block processes one outer instance.
  int instance_idx = blockIdx.x;

  // Use 2D thread indexing to cover the normalized dimension flexibly.
  int tid = threadIdx.y * blockDim.x + threadIdx.x;
  int nthreads = blockDim.x * blockDim.y;

  // Pointers to the start of this instance's data.
  const scalar_t* __restrict__ in_ptr = input + instance_idx * normalized_size;
  scalar_t* __restrict__ out_ptr = output + instance_idx * normalized_size;

  using accscalar_t = at::acc_type<scalar_t, true>;

  // Each thread computes a partial sum and sum of squares over a strided range.
  accscalar_t local_sum = 0;
  accscalar_t local_sum_sq = 0;
  for (int i = tid; i < normalized_size; i += nthreads) {
    // Use __ldg for read-only, coalesced global memory access
    scalar_t val = __ldg(&in_ptr[i]);
    accscalar_t a_val = static_cast<accscalar_t>(val);
    local_sum += a_val;
    local_sum_sq += a_val * a_val;
  }

  // Allocate shared memory for reduction: first part for partial sums, second for sum of squares.
  extern __shared__ char smem[];
  accscalar_t* s_sum = reinterpret_cast<accscalar_t*>(smem);
  accscalar_t* s_sum_sq = s_sum + nthreads;

  s_sum[tid] = local_sum;
  s_sum_sq[tid] = local_sum_sq;
  __syncthreads();

  // Perform parallel reduction in shared memory.
  for (int stride = nthreads / 2; stride > 0; stride >>= 1) {
    if (tid < stride) {
      s_sum[tid] += s_sum[tid + stride];
      s_sum_sq[tid] += s_sum_sq[tid + stride];
    }
    __syncthreads();
  }

  // Compute mean and inverse standard deviation in one thread, then broadcast.
  __shared__ accscalar_t mean;
  __shared__ accscalar_t inv_std;
  if (tid == 0) {
    mean = s_sum[0] / static_cast<accscalar_t>(normalized_size);
    accscalar_t var = s_sum_sq[0] / static_cast<accscalar_t>(normalized_size) - mean * mean;
    inv_std = static_cast<accscalar_t>(1) / sqrt(var + static_cast<accscalar_t>(eps));
  }
  __syncthreads();

  // Normalize and apply the affine transformation using coalesced global memory accesses.
  for (int i = tid; i < normalized_size; i += nthreads) {
    scalar_t val = __ldg(&in_ptr[i]);
    accscalar_t norm_val = (static_cast<accscalar_t>(val) - mean) * inv_std;
    scalar_t w = __ldg(&weight[i]);
    scalar_t b = __ldg(&bias[i]);
    out_ptr[i] = static_cast<scalar_t>(norm_val * static_cast<accscalar_t>(w) + static_cast<accscalar_t>(b));
  }
}

// C++ interface function for the optimized LayerNorm forward pass.
// This function sets up the grid and block dimensions and launches the CUDA kernel.

torch::Tensor layernorm_forward(torch::Tensor x, torch::Tensor weight, torch::Tensor bias, double eps = 1e-5) {
  // Create an output tensor with the same shape as x
  auto output = torch::empty_like(x);

  int normalized_size = weight.numel();
  int outer_size = x.numel() / normalized_size;

  // Configure a 2D thread block: fix 32 threads in x-dimension and compute y-dimension accordingly.
  int total_threads = (normalized_size < 1024) ? normalized_size : 1024;
  int block_x = 32;
  int block_y = (total_threads + block_x - 1) / block_x;  // ceil division
  dim3 block(block_x, block_y);
  dim3 grid(outer_size);

  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "layernorm_forward_cuda_opt", ([&] {
    using accscalar_t = at::acc_type<scalar_t, true>;
    int shared_size = total_threads * 2 * sizeof(accscalar_t);
    layernorm_forward_kernel_opt<scalar_t><<<grid, block, shared_size>>>(
        x.data_ptr<scalar_t>(),
        weight.data_ptr<scalar_t>(),
        bias.data_ptr<scalar_t>(),
        static_cast<float>(eps),
        output.data_ptr<scalar_t>(),
        normalized_size);
  }));

  return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &layernorm_forward, "LayerNorm forward (CUDA) optimized with 2D indexing and coalesced accesses",
        py::arg("x"), py::arg("weight"), py::arg("bias"), py::arg("eps") = 1e-5);
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.720 inst/cycle 0.000 5
Executed Ipc Elapsed 0.090 inst/cycle 0.000 5
Issue Slots Busy 18.050 % 0.000 5
Issued Ipc Active 0.720 inst/cycle 0.000 5
SM Busy 18.050 % 0.000 5
Memory Throughput 239932546058.440 byte/second 3501969329009922.500 5
Mem Busy 4.542 % 0.000 5
Max Bandwidth 7.160 % 0.000 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 45.668 % 0.002 5
Mem Pipes Busy 1.450 % 0.000 5
Warp Cycles Per Issued Instruction 44.246 cycle 0.001 5
Warp Cycles Per Executed Instruction 44.248 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 32.000 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 2.000 block 0.000 5
Block Limit Shared Mem 3.000 block 0.000 5
Block Limit Warps 2.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 49.926 % 0.000 5
Achieved Active Warps Per SM 31.954 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (49.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 413093.20 μs
Device Time 33276.58 μs
Self CPU Time 71.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 6391094.53 μs
Device Time 171250.77 μs
Self CPU Time 96585.73 μs
Self Device Time 171250.77 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 6324128.63 μs
Device Time 171250.77 μs
Self CPU Time 5467.23 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6409001.14 μs
Device Time 5667.86 μs
Self CPU Time 6409001.14 μs
Self Device Time 5667.86 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void layernorm_forward_kernel_opt<float>(float const*, float const*, float const*, float, float*, int)
CPU Time 0.00 μs
Device Time 7246666.59 μs
Self CPU Time 0.00 μs
Self Device Time 7246666.59 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 880511.34 μs
Device Time 0.00 μs
Self CPU Time 880511.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 171250.77 μs
Self CPU Time 0.00 μs
Self Device Time 171250.77 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45288 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:14:5 bugprone-easily-swappable-parameters
14 | const scalar_t* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 | const scalar_t* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 | const scalar_t* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:14:34: note: the first parameter in the range is 'input'
14 | const scalar_t* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:16:34: note: the last parameter in the range is 'bias'
16 | const scalar_t* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:22:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int instance_idx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:25:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int tid = threadIdx.y * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:26:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int nthreads = blockDim.x * blockDim.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:90:25: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
90 | int normalized_size = weight.numel();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:91:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
91 | int outer_size = x.numel() / normalized_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:100:3: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
100 | AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "layernorm_forward_cuda_opt", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:102:23: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
102 | int shared_size = total_threads * 2 * sizeof(accscalar_t);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:102:23: note: make conversion explicit to silence this warning
102 | int shared_size = total_threads * 2 * sizeof(accscalar_t);
| ^
| static_cast<unsigned long>(
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:66: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:44: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:56: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:70:12: note: expanded from macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
70 | return __VA_ARGS__(); \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:221:7: note: expanded from macro 'AT_DISPATCH_SWITCH'
221 | __VA_ARGS__ \
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_40/b4_s2_layernorm_forward_opt/base/base.cu:102:23: note: perform multiplication in a wider type
102 | int shared_size = total_threads * 2 * sizeof(accscalar_t);
| ^
| static_cast<long>(
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:66: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:44: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:56: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:70:12: note: expanded from macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
70 | return __VA_ARGS__(); \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:221:7: note: expanded from macro 'AT_DISPATCH_SWITCH'
221 | __VA_ARGS__ \
| ^~~~~~~~~~~