← Back to Leaderboard

The AI CUDA Engineer 👷

40_LayerNorm40_LayerNorm_stride_loops_edit_1

Level 1 • Task 40
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float = 1e-5
) -> torch.Tensor:
    """
    Functional implementation of LayerNorm.

    Args:
        x (torch.Tensor): Input tensor of shape (*, normalized_shape).
        weight (torch.Tensor): Weight tensor of shape (normalized_shape).
        bias (torch.Tensor): Bias tensor of shape (normalized_shape).
        eps (float): Epsilon parameter for numerical stability.

    Returns:
        torch.Tensor: Output tensor with Layer Normalization applied, same shape as input.
    """
    # Get the normalized shape from the weight tensor
    normalized_shape = tuple(x.shape[-len(weight.shape) :])
    return F.layer_norm(
        x, normalized_shape=normalized_shape, weight=weight, bias=bias, eps=eps
    )


class Model(nn.Module):
    """
    Simple model that performs Layer Normalization.
    """

    def __init__(self, normalized_shape: tuple):
        """
        Initializes the LayerNorm layer parameters.

        Args:
            normalized_shape (tuple): Shape of the input tensor to be normalized.
        """
        super(Model, self).__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies Layer Normalization to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (*, normalized_shape).
            fn: Function to apply (defaults to module_fn)

        Returns:
            torch.Tensor: Output tensor with Layer Normalization applied, same shape as input.
        """
        return fn(x, self.weight, self.bias)


batch_size = 16
features = 64
dim1 = 256
dim2 = 256


def get_inputs():
    x = torch.randn(batch_size, features, dim1, dim2)
    return [x]


def get_init_inputs():
    return [(features, dim1, dim2)]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs Layer Normalization.
    """
    def __init__(self, normalized_shape: tuple):
        """
        Initializes the LayerNorm layer.

        Args:
            normalized_shape (tuple): Shape of the input tensor to be normalized.
        """
        super(Model, self).__init__()
        self.ln = nn.LayerNorm(normalized_shape=normalized_shape)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies Layer Normalization to the input tensor.

        Args:
            x (torch.Tensor): Input tensor of shape (*, normalized_shape).

        Returns:
            torch.Tensor: Output tensor with Layer Normalization applied, same shape as input.
        """
        return self.ln(x)

batch_size = 16
features = 64
dim1 = 256
dim2 = 256

def get_inputs():
    x = torch.randn(batch_size, features, dim1, dim2)
    return [x]

def get_init_inputs():
    return [(features, dim1, dim2)]

Kernel Information

Related Kernels (Level 1, Task 40 • 40_LayerNorm)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_layernorm_streamed_base 0.94 8.60 0.70
🥈 layernorm_unrolled_base_base 1.01 7.99 0.65
🥉 layernorm_forward_optimized_base 1.02 7.94 0.65
4 layernorm_modular_base_base 1.02 7.91 0.65
5 layernorm_aligned_base_base 1.03 7.90 0.64
6 layernorm_forward_optimized_base 1.03 7.89 0.64
7 optimized_layernorm_2d_base 1.12 7.23 0.59
8 layernorm_vector8_aligned_base_base 1.24 6.53 0.53
9 optimized_layernorm_unrolled_base 1.63 4.96 0.40
10 optimized_layernorm_unrolled_edit_1 1.64 4.94 0.40
11 layernorm_ldg_optimized_base_edit_1 2.22 3.65 0.30
12 40_LayerNorm_stride_loops_edit_1 2.24 3.62 0.30
13 layernorm_hybrid_optimized_base 2.24 3.62 0.29
14 layernorm_ldg_optimized_base_base 2.24 3.61 0.29
15 layernorm_coalesced_base 3.26 2.49 0.20
16 layernorm_2d_indexing_base 3.26 2.48 0.20
17 optimized_layernorm_base 3.27 2.48 0.20
18 warp_shfl_layernorm_base 3.28 2.47 0.20
19 layernorm_forward_opt_base 3.28 2.47 0.20
20 layernorm_uniform_control_flow_base 3.28 2.47 0.20
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <ATen/AccumulateType.h>

// CUDA kernel for Layer Normalization forward with stride loops.
template <typename scalar_t>
__global__ void layernorm_forward_kernel_stride(
    const scalar_t* __restrict__ input,
    const scalar_t* __restrict__ weight,
    const scalar_t* __restrict__ bias,
    const float eps,
    scalar_t* __restrict__ output,
    const int normalized_size) {

  // Each block processes one instance along the outer dimension.
  int instance_idx = blockIdx.x;
  int tid = threadIdx.x;

  const scalar_t* in_ptr = input + instance_idx * normalized_size;
  scalar_t* out_ptr = output + instance_idx * normalized_size;

  // Use the accumulation type for better precision.
  using accscalar_t = at::acc_type<scalar_t, true>;

  // Allocate shared memory for partial sums, partial sums of squares, and input cache
  extern __shared__ char smem[];
  accscalar_t* s_sum    = reinterpret_cast<accscalar_t*>(smem);
  accscalar_t* s_sum_sq = s_sum + blockDim.x;
  
  // Initialize accumulators
  accscalar_t local_sum = 0;
  accscalar_t local_sum_sq = 0;
  
  // Process elements in chunks to ensure coalesced memory access
  const int CHUNK_SIZE = 4;  // Process 4 elements per thread at a time
  const int num_chunks = (normalized_size + blockDim.x * CHUNK_SIZE - 1) / (blockDim.x * CHUNK_SIZE);
  
  for (int chunk = 0; chunk < num_chunks; chunk++) {
    const int chunk_start = chunk * blockDim.x * CHUNK_SIZE + tid;
    
    // Load and process CHUNK_SIZE elements per thread
    #pragma unroll
    for (int i = 0; i < CHUNK_SIZE; i++) {
      const int idx = chunk_start + i * blockDim.x;
      if (idx < normalized_size) {
        accscalar_t val = static_cast<accscalar_t>(in_ptr[idx]);
        local_sum += val;
        local_sum_sq += val * val;
      }
    }
  }
  
  s_sum[tid] = local_sum;
  s_sum_sq[tid] = local_sum_sq;
  __syncthreads();

  // Parallel reduction to compute the total sum and sum of squares.
  for (int stride = blockDim.x / 2; stride > 0; stride /= 2) {
    if (tid < stride) {
      s_sum[tid]    += s_sum[tid + stride];
      s_sum_sq[tid] += s_sum_sq[tid + stride];
    }
    __syncthreads();
  }

  // Compute mean and inverse standard deviation.
  __shared__ accscalar_t mean;
  __shared__ accscalar_t inv_std;
  if (tid == 0) {
    mean = s_sum[0] / static_cast<accscalar_t>(normalized_size);
    accscalar_t var = s_sum_sq[0] / static_cast<accscalar_t>(normalized_size) - mean * mean;
    inv_std = static_cast<accscalar_t>(1) / sqrt(var + static_cast<accscalar_t>(eps));
  }
  __syncthreads();

  // Normalize the input and apply the affine transformation.
  for (int i = tid; i < normalized_size; i += blockDim.x) {
    accscalar_t val = static_cast<accscalar_t>(in_ptr[i]);
    accscalar_t norm_val = (val - mean) * inv_std;
    out_ptr[i] = static_cast<scalar_t>(norm_val * static_cast<accscalar_t>(weight[i]) +
                                         static_cast<accscalar_t>(bias[i]));
  }
}

// C++ interface. Note: eps has a default value of 1e-5.
torch::Tensor layernorm_forward_stride(torch::Tensor x, torch::Tensor weight, torch::Tensor bias, double eps = 1e-5) {
  // Create an output tensor with the same shape and options as x.
  auto output = torch::empty_like(x);

  // Determine normalized dimension size (the product of weight's dimensions)
  int normalized_size = weight.numel();
  int outer_size = x.numel() / normalized_size;

  // Choose number of threads (cap at 1024)
  int threads = (normalized_size < 1024) ? normalized_size : 1024;
  int blocks = outer_size;

  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "layernorm_forward_cuda_stride", ([&] {
    using accscalar_t = at::acc_type<scalar_t, true>;
    int shared_size = threads * 2 * sizeof(accscalar_t);
    layernorm_forward_kernel_stride<scalar_t><<<blocks, threads, shared_size>>>(
        x.data_ptr<scalar_t>(),
        weight.data_ptr<scalar_t>(),
        bias.data_ptr<scalar_t>(),
        static_cast<float>(eps),
        output.data_ptr<scalar_t>(),
        normalized_size);
  }));

  return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  // Bind the 'forward' function with default eps argument.
  m.def("forward", &layernorm_forward_stride, "LayerNorm forward with stride (CUDA)",
        py::arg("x"), py::arg("weight"), py::arg("bias"), py::arg("eps") = 1e-5);
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.080 inst/cycle 0.000 5
Executed Ipc Elapsed 0.130 inst/cycle 0.000 5
Issue Slots Busy 26.948 % 0.001 5
Issued Ipc Active 1.080 inst/cycle 0.000 5
SM Busy 26.948 % 0.001 5
Memory Throughput 348013044779.250 byte/second 26307305051882776.000 5
Mem Busy 6.546 % 0.000 5
Max Bandwidth 10.382 % 0.000 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 45.104 % 0.004 5
Mem Pipes Busy 2.110 % 0.000 5
Warp Cycles Per Issued Instruction 29.620 cycle 0.001 5
Warp Cycles Per Executed Instruction 29.624 cycle 0.001 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 32.000 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 2.000 block 0.000 5
Block Limit Shared Mem 3.000 block 0.000 5
Block Limit Warps 2.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 49.904 % 0.000 5
Achieved Active Warps Per SM 31.938 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (26.8%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (49.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::randn
CPU Time 307970.73 μs
Device Time 0.00 μs
Self CPU Time 117.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::to
CPU Time 296702.93 μs
Device Time 31470.53 μs
Self CPU Time 91.71 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 5063013.19 μs
Device Time 195389.01 μs
Self CPU Time 50561.02 μs
Self Device Time 195389.01 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 5044081.85 μs
Device Time 195389.01 μs
Self CPU Time 5198.50 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 5147735.21 μs
Device Time 6451.93 μs
Self CPU Time 5147735.21 μs
Self Device Time 6451.93 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void layernorm_forward_kernel_stride<float>(float const*, float const*, float const*, float, float*, int)
CPU Time 0.00 μs
Device Time 5629719.24 μs
Self CPU Time 0.00 μs
Self Device Time 5629719.24 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 607929.02 μs
Device Time 0.00 μs
Self CPU Time 607929.02 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 195389.01 μs
Self CPU Time 0.00 μs
Self Device Time 195389.01 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45292 warnings generated when compiling for host.
Suppressed 45324 warnings (45277 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:10:5 bugprone-easily-swappable-parameters
10 | const scalar_t* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const scalar_t* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:10:34: note: the first parameter in the range is 'input'
10 | const scalar_t* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:11:34: note: the last parameter in the range is 'weight'
11 | const scalar_t* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:18:22: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | int instance_idx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:19:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:38:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | const int num_chunks = (normalized_size + blockDim.x * CHUNK_SIZE - 1) / (blockDim.x * CHUNK_SIZE);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:41:29: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
41 | const int chunk_start = chunk * blockDim.x * CHUNK_SIZE + tid;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:46:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
46 | const int idx = chunk_start + i * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:60:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
60 | for (int stride = blockDim.x / 2; stride > 0; stride /= 2) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:79:47: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
79 | for (int i = tid; i < normalized_size; i += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:93:25: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
93 | int normalized_size = weight.numel();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:94:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
94 | int outer_size = x.numel() / normalized_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:100:3: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
100 | AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "layernorm_forward_cuda_stride", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:102:23: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
102 | int shared_size = threads * 2 * sizeof(accscalar_t);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:102:23: note: make conversion explicit to silence this warning
102 | int shared_size = threads * 2 * sizeof(accscalar_t);
| ^
| static_cast<unsigned long>(
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:66: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:44: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:56: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:70:12: note: expanded from macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
70 | return __VA_ARGS__(); \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:221:7: note: expanded from macro 'AT_DISPATCH_SWITCH'
221 | __VA_ARGS__ \
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_40/b1_s0_40_LayerNorm_stride_loops/edit_1/edit_1.cu:102:23: note: perform multiplication in a wider type
102 | int shared_size = threads * 2 * sizeof(accscalar_t);
| ^
| static_cast<long>(
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:66: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:44: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:56: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:70:12: note: expanded from macro 'AT_PRIVATE_CASE_TYPE_USING_HINT'
70 | return __VA_ARGS__(); \
| ^~~~~~~~~~~
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:221:7: note: expanded from macro 'AT_DISPATCH_SWITCH'
221 | __VA_ARGS__ \
| ^~~~~~~~~~~