47_Sum_reduction_over_a_dimension
• manual_unroll_warp_sum_reduction_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
"""
Applies sum reduction over the specified dimension.
Args:
x (torch.Tensor): Input tensor of shape (..., dim, ...).
dim (int): Dimension to reduce over.
Returns:
torch.Tensor: Output tensor after sum reduction, shape (..., 1, ...).
"""
return torch.sum(x, dim=dim, keepdim=True)
class Model(nn.Module):
"""
Simple model that performs sum reduction over a specified dimension.
"""
def __init__(self, dim: int):
"""
Initializes the model with the dimension to reduce over.
Args:
dim (int): Dimension to reduce over.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
"""
Applies sum reduction over the specified dimension.
Args:
x (torch.Tensor): Input tensor of shape (..., dim, ...).
Returns:
torch.Tensor: Output tensor after sum reduction, shape (..., 1, ...).
"""
return fn(x, self.dim)
batch_size = 16
dim1 = 256
dim2 = 256
reduce_dim = 1
def get_inputs():
x = torch.randn(batch_size, dim1, dim2)
return [x]
def get_init_inputs():
return [reduce_dim]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Simple model that performs sum reduction over a specified dimension.
"""
def __init__(self, dim: int):
"""
Initializes the model with the dimension to reduce over.
Args:
dim (int): Dimension to reduce over.
"""
super(Model, self).__init__()
self.dim = dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies sum reduction over the specified dimension.
Args:
x (torch.Tensor): Input tensor of shape (..., dim, ...).
Returns:
torch.Tensor: Output tensor after sum reduction, shape (..., 1, ...).
"""
return torch.sum(x, dim=self.dim, keepdim=True)
batch_size = 16
dim1 = 256
dim2 = 256
reduce_dim = 1
def get_inputs():
x = torch.randn(batch_size, dim1, dim2)
return [x]
def get_init_inputs():
return [reduce_dim]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
// This kernel performs sum reduction over a specified dimension using warp-level primitives with manual loop unrolling.
// Each warp computes one output element. The inner loop over the reduction dimension is manually unrolled
// to reduce loop overhead, and the warp-level reduction is performed using __shfl_down_sync.
template <typename scalar_t>
__global__ void manual_unroll_warp_reduce_sum_kernel(
const scalar_t* __restrict__ input,
scalar_t* __restrict__ output,
int64_t reduce_size,
int64_t inner_size,
int64_t total_outputs) {
const int warpSize = 32;
int global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
int warp_id = global_thread_id / warpSize; // Unique warp ID
int lane = global_thread_id % warpSize; // Lane index within the warp
int total_warps = (gridDim.x * blockDim.x) / warpSize;
// Each warp processes one or more output elements in a grid-stride loop
for (int out_idx = warp_id; out_idx < total_outputs; out_idx += total_warps) {
// Map 1D output index to 2D indices: outer and inner
int outer_idx = out_idx / inner_size;
int inner_idx = out_idx % inner_size;
// Compute the base index for this output element
int64_t base = outer_idx * reduce_size * inner_size + inner_idx;
scalar_t sum = 0;
// Calculate the number of iterations (each thread handles indices: lane, lane+warpSize, ...)
int T = (reduce_size > lane) ? ((reduce_size - lane + warpSize - 1) / warpSize) : 0;
// Manual unroll factor
constexpr int unroll = 4;
int unrolled_iters = (T / unroll) * unroll;
// Manual unrolling: process multiple iterations per loop to reduce overhead
#pragma unroll
for (int j = 0; j < unrolled_iters; j += unroll) {
int idx0 = lane + (j + 0) * warpSize;
int idx1 = lane + (j + 1) * warpSize;
int idx2 = lane + (j + 2) * warpSize;
int idx3 = lane + (j + 3) * warpSize;
sum += input[base + idx0 * inner_size];
sum += input[base + idx1 * inner_size];
sum += input[base + idx2 * inner_size];
sum += input[base + idx3 * inner_size];
}
// Process any remaining iterations
for (int j = unrolled_iters; j < T; j++) {
int idx = lane + j * warpSize;
sum += input[base + idx * inner_size];
}
// Warp-level reduction using shuffle down primitives (fully unrolled)
unsigned int mask = 0xffffffff;
sum += __shfl_down_sync(mask, sum, 16);
sum += __shfl_down_sync(mask, sum, 8);
sum += __shfl_down_sync(mask, sum, 4);
sum += __shfl_down_sync(mask, sum, 2);
sum += __shfl_down_sync(mask, sum, 1);
// The first lane writes the result for this output element
if (lane == 0) {
output[out_idx] = sum;
}
}
}
// CUDA wrapper function
torch::Tensor sum_reduce_cuda(torch::Tensor input, int64_t dim) {
if (dim < 0) dim += input.dim();
auto sizes = input.sizes().vec();
int64_t reduce_size = sizes[dim];
// Compute the product of dimensions before and after the reduction dimension
int64_t outer_size = 1;
for (int i = 0; i < dim; i++) {
outer_size *= sizes[i];
}
int64_t inner_size = 1;
for (int i = dim + 1; i < sizes.size(); i++) {
inner_size *= sizes[i];
}
// Prepare the output tensor by setting the reduced dimension to 1
sizes[dim] = 1;
auto output = torch::empty(sizes, input.options());
// Total number of output elements equals outer_size * inner_size
int64_t total_outputs = outer_size * inner_size;
// Each output element is computed by one warp (32 threads)
const int warpSize = 32;
int total_threads = total_outputs * warpSize;
int threads = 256; // Must be a multiple of 32
int blocks = (total_threads + threads - 1) / threads;
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "sum_reduce_cuda", ([&] {
manual_unroll_warp_reduce_sum_kernel<scalar_t><<<blocks, threads>>>(
input.data_ptr<scalar_t>(),
output.data_ptr<scalar_t>(),
reduce_size,
inner_size,
total_outputs
);
}));
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &sum_reduce_cuda, "Sum reduction forward (CUDA) with manual loop unrolling");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.518 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.384 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 13.306 | % | 0.108 | 5 |
Issued Ipc Active | 0.534 | inst/cycle | 0.000 | 5 |
SM Busy | 13.306 | % | 0.108 | 5 |
Memory Throughput | 443343486213.868 | byte/second | 40495861991838105600.000 | 5 |
Mem Busy | 54.364 | % | 0.632 | 5 |
Max Bandwidth | 13.962 | % | 0.029 | 5 |
L1/TEX Hit Rate | 87.480 | % | 0.000 | 5 |
L2 Hit Rate | 47.662 | % | 0.005 | 5 |
Mem Pipes Busy | 3.100 | % | 0.002 | 5 |
Warp Cycles Per Issued Instruction | 54.218 | cycle | 0.659 | 5 |
Warp Cycles Per Executed Instruction | 55.674 | cycle | 0.697 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 29.790 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 45.606 | % | 0.003 | 5 |
Achieved Active Warps Per SM | 29.190 | warp | 0.001 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (45.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 672729.92 | μs |
Device Time | 346.56 | μs |
Self CPU Time | 33.23 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 672696.69 | μs |
Device Time | 346.56 | μs |
Self CPU Time | 92.79 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 672015.65 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 59.98 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 670896.77 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 670896.77 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 573632.64 | μs |
Device Time | 24015.99 | μs |
Self CPU Time | 573632.64 | μs |
Self Device Time | 24015.99 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void manual_unroll_warp_reduce_sum_kernel<float>(float const*, float*, long, long, long) | ||
CPU Time | 0.00 | μs |
Device Time | 80131.99 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 80131.99 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 18766.71 | μs |
Device Time | 44346.65 | μs |
Self CPU Time | 18766.71 | μs |
Self Device Time | 44346.65 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 67255.36 | μs |
Device Time | 662186.41 | μs |
Self CPU Time | 14158.51 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 53098.13 | μs |
Device Time | 662186.41 | μs |
Self CPU Time | 16509.63 | μs |
Self Device Time | 662186.41 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 662186.41 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 662186.41 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45286 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.