← Back to Leaderboard

The AI CUDA Engineer 👷

47_Sum_reduction_over_a_dimensionwarp_level_primitives_sum_reduction_base

Level 1 • Task 47
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Applies sum reduction over the specified dimension.

    Args:
        x (torch.Tensor): Input tensor of shape (..., dim, ...).
        dim (int): Dimension to reduce over.

    Returns:
        torch.Tensor: Output tensor after sum reduction, shape (..., 1, ...).
    """
    return torch.sum(x, dim=dim, keepdim=True)


class Model(nn.Module):
    """
    Simple model that performs sum reduction over a specified dimension.
    """

    def __init__(self, dim: int):
        """
        Initializes the model with the dimension to reduce over.

        Args:
            dim (int): Dimension to reduce over.
        """
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies sum reduction over the specified dimension.

        Args:
            x (torch.Tensor): Input tensor of shape (..., dim, ...).

        Returns:
            torch.Tensor: Output tensor after sum reduction, shape (..., 1, ...).
        """
        return fn(x, self.dim)


batch_size = 16
dim1 = 256
dim2 = 256
reduce_dim = 1


def get_inputs():
    x = torch.randn(batch_size, dim1, dim2)
    return [x]


def get_init_inputs():
    return [reduce_dim]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs sum reduction over a specified dimension.
    """
    def __init__(self, dim: int):
        """
        Initializes the model with the dimension to reduce over.

        Args:
            dim (int): Dimension to reduce over.
        """
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies sum reduction over the specified dimension.

        Args:
            x (torch.Tensor): Input tensor of shape (..., dim, ...).

        Returns:
            torch.Tensor: Output tensor after sum reduction, shape (..., 1, ...).
        """
        return torch.sum(x, dim=self.dim, keepdim=True)

batch_size = 16
dim1 = 256
dim2 = 256
reduce_dim = 1

def get_inputs():
    x = torch.randn(batch_size, dim1, dim2)
    return [x]

def get_init_inputs():
    return [reduce_dim]

Kernel Information

Related Kernels (Level 1, Task 47 • 47_Sum_reduction_over_a_dimension)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Kernel that uses warp-level primitives (__shfl_down_sync) for reduction across the reduce dimension.
// Each warp computes one output element by partitioning the reduction workload among its threads.

template <typename scalar_t>
__global__ void warp_reduce_sum_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    int64_t reduce_size,
    int64_t inner_size,
    int64_t total_outputs) {

    // Calculate global warp id and lane id
    const int warpSize = 32;
    int global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
    int warp_id = global_thread_id / warpSize;
    int lane = global_thread_id % warpSize;

    // Total warps available
    int total_warps = (gridDim.x * blockDim.x) / warpSize;

    // Each warp processes one output element in a grid-stride loop over warps
    for (int out_idx = warp_id; out_idx < total_outputs; out_idx += total_warps) {
        // Map the output index to the corresponding outer and inner indices
        int outer_idx = out_idx / inner_size;
        int inner_idx = out_idx % inner_size;

        // Compute the base address for the reduction
        int64_t base = outer_idx * reduce_size * inner_size + inner_idx;
        scalar_t sum_val = 0;

        // Each thread in the warp accumulates a partial sum over the reduction dimension, striding by warpSize
        for (int i = lane; i < reduce_size; i += warpSize) {
            sum_val += input[base + i * inner_size];
        }

        // Perform warp-level reduction using shuffle down
        for (int offset = warpSize / 2; offset > 0; offset /= 2) {
            sum_val += __shfl_down_sync(0xFFFFFFFF, sum_val, offset);
        }

        // Lane 0 writes the final result for this output element
        if (lane == 0) {
            output[out_idx] = sum_val;
        }
    }
}

// CUDA wrapper function
torch::Tensor sum_reduce_cuda(torch::Tensor input, int64_t dim) {
    // Adjust for negative dimensions
    if (dim < 0) dim += input.dim();

    auto sizes = input.sizes().vec();
    int64_t reduce_size = sizes[dim];

    // Compute outer and inner dimensions
    int64_t outer_size = 1;
    for (int i = 0; i < dim; i++) {
        outer_size *= sizes[i];
    }
    int64_t inner_size = 1;
    for (int i = dim + 1; i < sizes.size(); i++) {
        inner_size *= sizes[i];
    }

    // Output tensor: replacing reduction dimension with 1
    sizes[dim] = 1;
    auto output = torch::empty(sizes, input.options());

    // Total number of output elements is outer_size x inner_size
    int64_t total_outputs = outer_size * inner_size;

    // Configure kernel launch parameters using warp-level reduction
    // Each output element is computed by one warp (32 threads)
    const int warpSize = 32;
    int required_warps = total_outputs;      // one warp per output element
    int total_threads = required_warps * warpSize;
    int threads = 256;                       // Choose block size as a multiple of 32 (e.g., 256 threads per block)
    int blocks = (total_threads + threads - 1) / threads;

    AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "sum_reduce_cuda", ([&] {
        warp_reduce_sum_kernel<scalar_t><<<blocks, threads>>>(
            input.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>(),
            reduce_size,
            inner_size,
            total_outputs
        );
    }));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &sum_reduce_cuda, "Sum reduction forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.624 inst/cycle 0.000 5
Executed Ipc Elapsed 0.456 inst/cycle 0.000 5
Issue Slots Busy 15.936 % 0.022 5
Issued Ipc Active 0.638 inst/cycle 0.000 5
SM Busy 15.936 % 0.022 5
Memory Throughput 436308638329.892 byte/second 9442660766087698432.000 5
Mem Busy 53.590 % 0.164 5
Max Bandwidth 13.062 % 0.009 5
L1/TEX Hit Rate 87.482 % 0.000 5
L2 Hit Rate 47.534 % 0.007 5
Mem Pipes Busy 3.758 % 0.001 5
Warp Cycles Per Issued Instruction 41.174 cycle 0.141 5
Warp Cycles Per Executed Instruction 42.092 cycle 0.147 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 30.160 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 41.380 % 0.007 5
Achieved Active Warps Per SM 26.484 warp 0.003 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. The difference between calculated theoretical (75.0%) and measured achieved occupancy (41.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 470468.65 μs
Device Time 376.19 μs
Self CPU Time 41.60 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 470427.05 μs
Device Time 376.19 μs
Self CPU Time 102.33 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 469679.53 μs
Device Time 0.00 μs
Self CPU Time 90.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 450896.39 μs
Device Time 0.00 μs
Self CPU Time 450896.39 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 556398.47 μs
Device Time 21823.24 μs
Self CPU Time 556398.47 μs
Self Device Time 21823.24 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void warp_reduce_sum_kernel<float>(float const*, float*, long, long, long)
CPU Time 0.00 μs
Device Time 74166.27 μs
Self CPU Time 0.00 μs
Self Device Time 74166.27 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 18589.53 μs
Device Time 43256.94 μs
Self CPU Time 18589.53 μs
Self Device Time 43256.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 67915.94 μs
Device Time 647232.34 μs
Self CPU Time 15040.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 52876.40 μs
Device Time 647232.34 μs
Self CPU Time 16238.53 μs
Self Device Time 647232.34 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 647310.83 μs
Self CPU Time 0.00 μs
Self Device Time 647310.83 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45285 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:13:5 bugprone-easily-swappable-parameters
13 | int64_t inner_size,
| ^~~~~~~~~~~~~~~~~~~
14 | int64_t total_outputs) {
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:13:13: note: the first parameter in the range is 'inner_size'
13 | int64_t inner_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:14:13: note: the last parameter in the range is 'total_outputs'
14 | int64_t total_outputs) {
| ^~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:18:28: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
18 | int global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:23:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int total_warps = (gridDim.x * blockDim.x) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:28:25: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int outer_idx = out_idx / inner_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:29:25: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int inner_idx = out_idx % inner_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:66:18: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
66 | for (int i = dim + 1; i < sizes.size(); i++) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:80:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | int required_warps = total_outputs; // one warp per output element
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250201_optimize_b10_s4_e0_sweep/level_1/task_47/b5_s2_warp_level_primitives_sum_reduction/base/base.cu:85:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
85 | AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "sum_reduce_cuda", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^