← Back to Leaderboard

The AI CUDA Engineer 👷

53_Min_reduction_over_a_dimensionmin_reduce_combined_base

Level 1 • Task 53
import torch
import torch.nn as nn
import torch.functional as F


def module_fn(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Applies min reduction over the specified dimension to the input tensor.

    Args:
        x (torch.Tensor): Input tensor
        dim (int): The dimension to reduce over

    Returns:
        torch.Tensor: Output tensor after min reduction over the specified dimension
    """
    return torch.min(x, dim)[0]


class Model(nn.Module):
    """
    Simple model that performs min reduction over a specific dimension.
    """

    def __init__(self, dim: int):
        """
        Initializes the model with the dimension to reduce over.

        Args:
            dim (int): The dimension to reduce over.
        """
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Applies min reduction over the specified dimension to the input tensor.

        Args:
            x (torch.Tensor): Input tensor
            fn: Function to apply (defaults to module_fn)

        Returns:
            torch.Tensor: Output tensor after min reduction over the specified dimension
        """
        return fn(x, self.dim)


batch_size = 16
dim1 = 256
dim2 = 256


def get_inputs():
    x = torch.randn(batch_size, dim1, dim2)
    return [x]


def get_init_inputs():
    return [1]  # Example, change to desired dimension
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs min reduction over a specific dimension.
    """
    def __init__(self, dim: int):
        """
        Initializes the model with the dimension to reduce over.

        Args:
            dim (int): The dimension to reduce over.
        """
        super(Model, self).__init__()
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Applies min reduction over the specified dimension to the input tensor.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            torch.Tensor: Output tensor after min reduction over the specified dimension.
        """
        return torch.min(x, dim=self.dim)[0]

batch_size = 16
dim1 = 256
dim2 = 256

def get_inputs():
    x = torch.randn(batch_size, dim1, dim2)
    return [x]

def get_init_inputs():
    return [1] # Example, change to desired dimension

Kernel Information

Related Kernels (Level 1, Task 53 • 53_Min_reduction_over_a_dimension)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 min_reduction_warp_base_base 0.01 2.19 3.09
🥇 efficient_min_reduce_kernel_base 0.01 2.19 3.09
🥇 min_reduce_block_size_tuning_base 0.01 2.19 3.09
🥇 min_reduce_optimized_base 0.01 2.19 3.09
🥇 min_reduction_optimized_memory_base 0.01 2.19 3.09
🥇 min_reduce_tunable_blocksize_base 0.01 2.19 3.09
🥇 min_reduce_dynamic_block_base_base 0.01 2.19 3.09
🥇 modular_min_reduce_kernel_base_base 0.01 2.19 3.09
🥇 min_reduce_adaptive_blocks_base_base 0.01 2.19 3.09
🥇 min_reduce_fused_warp_base 0.01 2.19 3.09
🥇 min_reduce_combined_base 0.01 2.19 3.09
🥇 min_reduce_warp_unroll_base 0.01 2.19 3.09
🥇 min_reduce_combined_kernel_base 0.01 2.19 3.09
14 balanced_min_reduction_base 0.01 1.85 2.62
15 min_reduction_warp_shared_hybrid_base 0.01 1.72 2.43
15 optimized_block_size_experiment_base_base 0.01 1.72 2.43
15 min_reduction_shared_base 0.01 1.72 2.43
15 modular_min_reduction_base 0.01 1.72 2.43
15 fast_min_reduction_edit_1 0.01 1.72 2.43
15 vector_load_min_reduction_edit_1 0.01 1.72 2.43
/*
Optimized CUDA kernel for min reduction combining loop unrolling and streamlined indexing.
This kernel logically reshapes the input as [outer, r, inner] and performs reduction along the r dimension.
Each warp (32 threads) computes one output element via warp-level reduction using __shfl_down_sync.
*/

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
#include <limits>
#include <c10/cuda/CUDAStream.h>

// Helper function to perform warp-level reduction of min
template <typename scalar_t>
__device__ __forceinline__ scalar_t warpReduceMin(scalar_t val) {
  // The warp size is assumed to be 32
  for (int offset = 16; offset > 0; offset /= 2) {
    scalar_t other = __shfl_down_sync(0xffffffff, val, offset);
    if (other < val)
      val = other;
  }
  return val;
}

// Combined kernel: each warp computes one output element's min reduction
template <typename scalar_t>
__global__ void min_reduce_combined_kernel(
    const scalar_t* __restrict__ input,
    scalar_t* __restrict__ output,
    int outer,
    int r,
    int inner) {

  const int warpSize = 32;
  // Compute global warp id; each warp of 32 threads processes one output element
  int warp_id = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
  if (warp_id >= outer * inner) return;

  int lane = threadIdx.x % warpSize;  // lane index within the warp

  // Map warp_id to corresponding (outer, inner) coordinates
  int outer_idx = warp_id / inner;
  int inner_idx = warp_id % inner;
  int base = outer_idx * (r * inner) + inner_idx;

  // Initialize local minimum using maximum possible value
  scalar_t local_min = std::numeric_limits<scalar_t>::max();

  // Loop over reduction dimension with stride = warpSize and use loop unrolling
  #pragma unroll
  for (int j = lane; j < r; j += warpSize) {
    int idx = base + j * inner;
    scalar_t val = input[idx];
    local_min = (val < local_min) ? val : local_min;
  }

  // Perform warp-wide reduction using shuffle operations
  local_min = warpReduceMin<scalar_t>(local_min);

  // The first lane in the warp writes the result
  if (lane == 0) {
    output[warp_id] = local_min;
  }
}

// Forward function: sets up dimensions, creates output tensor, and launches the kernel
torch::Tensor forward(torch::Tensor input, int64_t dim) {
  TORCH_CHECK(input.is_cuda(), "Input must be a CUDA tensor");
  if (!input.is_contiguous()) {
    input = input.contiguous();
  }

  int ndim = input.dim();
  TORCH_CHECK(dim >= 0 && dim < ndim, "dim out of range");

  // Calculate sizes: combine dimensions before and after the reduced dimension
  int outer = 1;
  for (int i = 0; i < dim; i++) {
    outer *= input.size(i);
  }
  int r = input.size(dim);
  int inner = 1;
  for (int i = dim + 1; i < ndim; i++) {
    inner *= input.size(i);
  }

  // Build output shape by removing the reduced dimension
  std::vector<int64_t> output_shape;
  for (int i = 0; i < ndim; i++) {
    if (i != dim) {
      output_shape.push_back(input.size(i));
    }
  }
  auto output = torch::empty(output_shape, input.options());

  // Each warp (32 threads) computes one element of the output
  int total_warps = outer * inner;
  const int threads_per_block = 128; // e.g., 128 threads per block (4 warps per block)
  int num_blocks = (total_warps * 32 + threads_per_block - 1) / threads_per_block;

  AT_DISPATCH_ALL_TYPES(input.scalar_type(), "min_reduce_combined_cuda", ([&] {
    min_reduce_combined_kernel<scalar_t><<<num_blocks, threads_per_block, 0,
      c10::cuda::getCurrentCUDAStream().stream()>>>(
        input.data_ptr<scalar_t>(),
        output.data_ptr<scalar_t>(),
        outer,
        r,
        inner);
  }));

  return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &forward, "Combined optimized min reduction using warp-level primitives (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.356 inst/cycle 0.000 5
Executed Ipc Elapsed 0.260 inst/cycle 0.000 5
Issue Slots Busy 9.200 % 0.008 5
Issued Ipc Active 0.366 inst/cycle 0.000 5
SM Busy 9.200 % 0.008 5
Memory Throughput 466266267340.176 byte/second 9537015368773529600.000 5
Mem Busy 57.448 % 0.106 5
Max Bandwidth 16.752 % 0.011 5
L1/TEX Hit Rate 74.864 % 0.000 5
L2 Hit Rate 62.512 % 0.177 5
Mem Pipes Busy 3.276 % 0.000 5
Warp Cycles Per Issued Instruction 69.558 cycle 0.108 5
Warp Cycles Per Executed Instruction 71.878 cycle 0.116 5
Avg. Active Threads Per Warp 30.450 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.040 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 16.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 40.154 % 0.004 5
Achieved Active Warps Per SM 25.698 warp 0.002 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (40.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 563242.74 μs
Device Time 359.39 μs
Self CPU Time 36.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 563206.08 μs
Device Time 359.39 μs
Self CPU Time 89.61 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 562522.59 μs
Device Time 0.00 μs
Self CPU Time 88.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 562227.94 μs
Device Time 0.00 μs
Self CPU Time 562227.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 329034.95 μs
Device Time 469.57 μs
Self CPU Time 329034.95 μs
Self Device Time 469.57 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void min_reduce_combined_kernel<float>(float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 37130.14 μs
Self CPU Time 0.00 μs
Self Device Time 37130.14 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 48868.89 μs
Device Time 401344.17 μs
Self CPU Time 8297.47 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 40572.17 μs
Device Time 401344.17 μs
Self CPU Time 10244.97 μs
Self Device Time 401344.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 401344.17 μs
Self CPU Time 0.00 μs
Self Device Time 401344.17 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45296 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:31:5 bugprone-easily-swappable-parameters
31 | int outer,
| ^~~~~~~~~~
32 | int r,
| ~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:31:9: note: the first parameter in the range is 'outer'
31 | int outer,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:32:9: note: the last parameter in the range is 'r'
32 | int r,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:37:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int warp_id = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:40:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
40 | int lane = threadIdx.x % warpSize; // lane index within the warp
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:74:14: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | int ndim = input.dim();
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:80:14: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | outer *= input.size(i);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:82:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | int r = input.size(dim);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:84:16: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
84 | for (int i = dim + 1; i < ndim; i++) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:85:14: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
85 | inner *= input.size(i);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_53/b8_s3_min_reduce_combined/base/base.cu:102:3: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
102 | AT_DISPATCH_ALL_TYPES(input.scalar_type(), "min_reduce_combined_cuda", ([&] {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:482:34: note: expanded from macro 'AT_DISPATCH_ALL_TYPES'
482 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_ALL_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:478:3: note: expanded from macro 'AT_DISPATCH_CASE_ALL_TYPES'
478 | AT_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:458:3: note: expanded from macro 'AT_DISPATCH_CASE_INTEGRAL_TYPES'
458 | AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
| ^
note: (skipping 2 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^