← Back to Leaderboard

The AI CUDA Engineer 👷

57_conv_transposed_2D__square_input__square_kernelhybrid_conv_transpose2d_base

Level 1 • Task 57
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    output_padding: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a transposed 2D convolution with square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride for the convolution.
        padding (int): Padding for the convolution.
        output_padding (int): Additional size added to one side of the output shape.
        groups (int): Number of groups for the convolution.

    Returns:
        torch.Tensor: Output tensor after convolution.
    """
    return F.conv_transpose2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a transposed 2D convolution with square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        output_padding (int): Additional size added to one side of the output shape.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        output_padding: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.groups = groups
        self.output_padding = output_padding

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the transposed 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.output_padding,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
width = 128
height = 128
stride = 1
padding = 0
output_padding = 0
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a transposed 2D convolution with square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        output_padding (int, optional): Additional size added to one side of the output shape. Defaults to 0.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        output_padding: int = 0,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the transposed 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Test code
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
width = 128
height = 128
stride = 1
padding = 0
output_padding = 0
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        groups,
        bias,
    ]

Kernel Information

Related Kernels (Level 1, Task 57 • 57_conv_transposed_2D__square_input__square_kernel)

#include <torch/extension.h>
#include <cuda_runtime.h>
#include <vector>
#include <algorithm>

// Custom CUDA kernel that computes contributions from each input element.
// Each thread processes one input element from a batch chunk and accumulates into the corresponding output region via atomic adds.
__global__ void conv_transpose2d_kernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    float* __restrict__ output,
    int chunkN,       // number of batches in this chunk
    int C_in, int H, int W,
    int C_out, int K, // square kernel
    int stride,
    int padding,
    int H_out, int W_out) {

    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int total = chunkN * C_in * H * W;
    if (tid >= total) return;

    // Decode the thread's linear index into (n, c_in, h, w) indices
    int w_idx = tid % W;
    int tmp = tid / W;
    int h_idx = tmp % H;
    tmp = tmp / H;
    int c_in = tmp % C_in;
    int n = tmp / C_in;  // local batch index within the chunk

    float in_val = input[tid];

    // For each kernel element, compute the corresponding output indices
    for (int ki = 0; ki < K; ++ki) {
        for (int kj = 0; kj < K; ++kj) {
            int out_i = h_idx * stride - padding + ki;
            int out_j = w_idx * stride - padding + kj;
            if (out_i < 0 || out_i >= H_out || out_j < 0 || out_j >= W_out) continue;

            // Loop over all output channels
            for (int oc = 0; oc < C_out; ++oc) {
                int weight_idx = c_in * (C_out * K * K) + oc * (K * K) + ki * K + kj;
                float w_val = weight[weight_idx];

                int out_index = n * (C_out * H_out * W_out) + oc * (H_out * W_out) + out_i * W_out + out_j;
                atomicAdd(&output[out_index], in_val * w_val);
            }
        }
    }
}

// Kernel to add bias if provided (each output channel gets its own bias value)
__global__ void add_bias_kernel(
    float* output,
    const float* bias,
    int total_elements,
    int C_out,
    int H_out,
    int W_out) {
    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    if (tid >= total_elements) return;

    // Determine which output channel this element belongs to
    int channel = (tid / (H_out * W_out)) % C_out;
    output[tid] += bias[channel];
}

// Hybrid forward function that chooses between a built-in implementation and a custom kernel
// based on the input batch size. For small batches the built-in at::conv_transpose2d is preferred
// (as it may be optimized via cuDNN), while for large batches our custom kernel with multiple streams
// can yield improved GPU occupancy by overlapping work.

torch::Tensor conv_transpose2d_forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int64_t stride,
    int64_t padding,
    int64_t output_padding,
    int64_t groups) {

    // Ensure inputs are CUDA tensors and contiguous
    TORCH_CHECK(x.is_cuda(), "Input tensor must be on CUDA");
    TORCH_CHECK(weight.is_cuda(), "Weight tensor must be on CUDA");
    TORCH_CHECK(x.is_contiguous(), "Input tensor must be contiguous");
    TORCH_CHECK(weight.is_contiguous(), "Weight tensor must be contiguous");
    if (bias.has_value()) {
        auto bias_val = bias.value();
        TORCH_CHECK(bias_val.is_cuda(), "Bias tensor must be on CUDA");
        TORCH_CHECK(bias_val.is_contiguous(), "Bias tensor must be contiguous");
    }

    // Retrieve input dimensions: x is [N, C_in, H, W]
    auto x_sizes = x.sizes();
    int N = x_sizes[0];
    int C_in = x_sizes[1];
    int H = x_sizes[2];
    int W = x_sizes[3];

    // Retrieve weight dimensions: weight is assumed to be [C_in, C_out, K, K]
    auto w_sizes = weight.sizes();
    int C_out = w_sizes[1];
    int K = w_sizes[2];

    // Compute output dimensions using the ConvTranspose2d formula
    int H_out = (H - 1) * stride - 2 * padding + K + output_padding;
    int W_out = (W - 1) * stride - 2 * padding + K + output_padding;

    // For small batches, the built-in implementation (often backed by cuDNN) performs very well
    if (N < 8) {  // threshold parameter; can be tuned
        return at::conv_transpose2d(
            x,
            weight,
            bias,
            {stride, stride},
            {padding, padding},
            {output_padding, output_padding},
            groups
        );
    }

    // Allocate output tensor and initialize to zero
    auto output = torch::zeros({N, C_out, H_out, W_out}, x.options());

    // Use multiple CUDA streams to partition the batch and overlap kernel execution
    int nstreams = 2;
    std::vector<cudaStream_t> streams(nstreams);
    for (int i = 0; i < nstreams; i++) {
        cudaStreamCreate(&streams[i]);
    }

    // Partition the batch dimension among streams
    int chunk = (N + nstreams - 1) / nstreams;
    int block_size = 256;
    const float* weight_ptr = weight.data_ptr<float>();

    for (int i = 0; i < nstreams; i++) {
        int start = i * chunk;
        int end = std::min(N, (i + 1) * chunk);
        int chunkN = end - start;
        if (chunkN <= 0) continue;

        // Number of input elements in this batch chunk
        int num_elements = chunkN * C_in * H * W;
        const float* x_ptr = x.data_ptr<float>() + start * C_in * H * W;
        // Output pointer offset corresponding to this batch chunk
        float* out_ptr = output.data_ptr<float>() + start * C_out * H_out * W_out;

        int grid_size = (num_elements + block_size - 1) / block_size;
        conv_transpose2d_kernel<<<grid_size, block_size, 0, streams[i]>>>(
            x_ptr,
            weight_ptr,
            out_ptr,
            chunkN, C_in, H, W,
            C_out, K,
            stride,
            padding,
            H_out, W_out
        );
    }

    // Synchronize and destroy streams
    for (int i = 0; i < nstreams; i++) {
        cudaStreamSynchronize(streams[i]);
        cudaStreamDestroy(streams[i]);
    }

    // If bias is provided, launch a kernel to add it to the output
    if (bias.has_value()) {
        auto bias_tensor = bias.value();
        int total_output = N * C_out * H_out * W_out;
        int block_bias = 256;
        int grid_bias = (total_output + block_bias - 1) / block_bias;
        add_bias_kernel<<<grid_bias, block_bias>>>(
            output.data_ptr<float>(),
            bias_tensor.data_ptr<float>(),
            total_output, C_out, H_out, W_out
        );
        cudaDeviceSynchronize();
    }

    return output;
}

// Pybind11 module definition
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &conv_transpose2d_forward, "Hybrid ConvTranspose2d forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::to
CPU Time 223383.16 μs
Device Time 3238.12 μs
Self CPU Time 69.36 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 223313.80 μs
Device Time 3238.12 μs
Self CPU Time 106.80 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 219677.63 μs
Device Time 0.00 μs
Self CPU Time 132.35 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 218995.90 μs
Device Time 0.00 μs
Self CPU Time 218995.90 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaStreamSynchronize
CPU Time 9976241.37 μs
Device Time 5435.09 μs
Self CPU Time 9976241.37 μs
Self Device Time 5435.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 23948.89 μs
Device Time 27637.50 μs
Self CPU Time 2185.27 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 28510.34 μs
Device Time 124288.94 μs
Self CPU Time 5009.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 23503.02 μs
Device Time 124288.94 μs
Self CPU Time 6460.65 μs
Self Device Time 124288.94 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv_transpose2d_kernel(float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 10247761.24 μs
Self CPU Time 0.00 μs
Self Device Time 10247761.24 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 96651.44 μs
Self CPU Time 0.00 μs
Self Device Time 96651.44 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45313 warnings generated when compiling for host.
Suppressed 45335 warnings (45288 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:9:5 bugprone-easily-swappable-parameters
9 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:9:31: note: the first parameter in the range is 'input'
9 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:10:31: note: the last parameter in the range is 'weight'
10 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:13:22: warning: 2 adjacent parameters of 'conv_transpose2d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | int C_in, int H, int W,
| ^~~~~~
14 | int C_out, int K, // square kernel
| ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:13:26: note: the first parameter in the range is 'W'
13 | int C_in, int H, int W,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:14:9: note: the last parameter in the range is 'C_out'
14 | int C_out, int K, // square kernel
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:14:16: warning: 2 adjacent parameters of 'conv_transpose2d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
14 | int C_out, int K, // square kernel
| ^~~~~~~~~~~~~~~~~~~~~~~
15 | int stride,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:14:20: note: the first parameter in the range is 'K'
14 | int C_out, int K, // square kernel
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:15:9: note: the last parameter in the range is 'stride'
15 | int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:16:5: warning: 2 adjacent parameters of 'conv_transpose2d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | int padding,
| ^~~~~~~~~~~~
17 | int H_out, int W_out) {
| ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:16:9: note: the first parameter in the range is 'padding'
16 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:17:9: note: the last parameter in the range is 'H_out'
17 | int H_out, int W_out) {
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:19:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:56:5: warning: 2 adjacent parameters of 'add_bias_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
56 | int total_elements,
| ^~~~~~~~~~~~~~~~~~~
57 | int C_out,
| ~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:56:9: note: the first parameter in the range is 'total_elements'
56 | int total_elements,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:57:9: note: the last parameter in the range is 'C_out'
57 | int C_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:60:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
60 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:74:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
74 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:75:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
75 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:88:14: warning: the variable 'bias_val' is copy-constructed from a const reference but is only used as const reference; consider making it a const reference [performance-unnecessary-copy-initialization]
88 | auto bias_val = bias.value();
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:95:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | int N = x_sizes[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:96:16: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | int C_in = x_sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:97:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | int H = x_sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:98:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | int W = x_sizes[3];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:102:17: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | int C_out = w_sizes[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:103:13: warning: narrowing conversion from 'long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | int K = w_sizes[2];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:106:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
106 | int H_out = (H - 1) * stride - 2 * padding + K + output_padding;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:107:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
107 | int W_out = (W - 1) * stride - 2 * padding + K + output_padding;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:145:30: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
145 | const float* x_ptr = x.data_ptr<float>() + start * C_in * H * W;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:145:52: note: make conversion explicit to silence this warning
3 | const float* x_ptr = x.data_ptr<float>() + start * C_in * H * W;
| ^~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:145:52: note: perform multiplication in a wider type
145 | const float* x_ptr = x.data_ptr<float>() + start * C_in * H * W;
| ^~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:147:26: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
147 | float* out_ptr = output.data_ptr<float>() + start * C_out * H_out * W_out;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:147:53: note: make conversion explicit to silence this warning
147 | float* out_ptr = output.data_ptr<float>() + start * C_out * H_out * W_out;
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:147:53: note: perform multiplication in a wider type
147 | float* out_ptr = output.data_ptr<float>() + start * C_out * H_out * W_out;
| ^~~~~~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:156:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
156 | stride,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:157:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
157 | padding,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_57/b8_s3_hybrid_conv_transpose2d/base/base.cu:170:14: warning: the variable 'bias_tensor' is copy-constructed from a const reference but is only used as const reference; consider making it a const reference [performance-unnecessary-copy-initialization]
170 | auto bias_tensor = bias.value();
| ^
| const &