← Back to Leaderboard

The AI CUDA Engineer 👷

57_conv_transposed_2D__square_input__square_kernelconv_transposed2d_coalesced_base

Level 1 • Task 57
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    output_padding: int,
    groups: int,
) -> torch.Tensor:
    """
    Performs a transposed 2D convolution with square input and square kernel.

    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride for the convolution.
        padding (int): Padding for the convolution.
        output_padding (int): Additional size added to one side of the output shape.
        groups (int): Number of groups for the convolution.

    Returns:
        torch.Tensor: Output tensor after convolution.
    """
    return F.conv_transpose2d(
        x,
        weight,
        bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
        groups=groups,
    )


class Model(nn.Module):
    """
    Performs a transposed 2D convolution with square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        output_padding (int): Additional size added to one side of the output shape.
        groups (int): Number of blocked connections from input channels to output channels.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        output_padding: int,
        groups: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.groups = groups
        self.output_padding = output_padding

    def forward(
        self,
        x: torch.Tensor,
        fn=module_fn,
    ) -> torch.Tensor:
        """
        Performs the transposed 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.output_padding,
            self.groups,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
width = 128
height = 128
stride = 1
padding = 0
output_padding = 0
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        groups,
        bias,
    ]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a transposed 2D convolution with square input and square kernel.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        output_padding (int, optional): Additional size added to one side of the output shape. Defaults to 0.
        groups (int, optional): Number of blocked connections from input channels to output channels. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        output_padding: int = 0,
        groups: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
            groups=groups,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the transposed 2D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Test code
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
width = 128
height = 128
stride = 1
padding = 0
output_padding = 0
groups = 1
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        groups,
        bias,
    ]

Kernel Information

Related Kernels (Level 1, Task 57 • 57_conv_transposed_2D__square_input__square_kernel)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__device__ inline int d_min(int a, int b) { return a < b ? a : b; }
__device__ inline int d_max(int a, int b) { return a > b ? a : b; }

__global__ void convTranspose2dCoalescedKernel(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int batch,
    int in_channels,
    int out_channels,
    int height_in,
    int width_in,
    int kernel_size,
    int stride,
    int padding,
    int height_out,
    int width_out,
    int groups,
    bool bias_present
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total = batch * out_channels * height_out * width_out;
    if (idx >= total) return;

    // Coalesced thread mapping: [out_ch, w, h, b]
    int out_ch = idx % out_channels;
    int tmp = idx / out_channels;
    int w = tmp % width_out;
    tmp /= width_out;
    int h = tmp % height_out;
    int b = tmp / height_out;

    float out_val = 0.0f;

    int out_channels_per_group = out_channels / groups;
    int in_channels_per_group = in_channels / groups;
    int group = out_ch / out_channels_per_group;
    int out_ch_mod = out_ch % out_channels_per_group;

    int h_temp = h + padding;
    int w_temp = w + padding;

    // Optimized bounds checking
    int p0 = h_temp % stride;
    int p_min = d_max(p0, h_temp - (height_in - 1) * stride);
    int p_max = d_min(kernel_size - 1, h_temp);
    int p_start = p_min + ((p0 - (p_min % stride) + stride) % stride);

    int q0 = w_temp % stride;
    int q_min = d_max(q0, w_temp - (width_in - 1) * stride);
    int q_max = d_min(kernel_size - 1, w_temp);
    int q_start = q_min + ((q0 - (q_min % stride) + stride) % stride);

    int in_ch_start = group * in_channels_per_group;
    int in_ch_end = in_ch_start + in_channels_per_group;

    for (int in_ch = in_ch_start; in_ch < in_ch_end; in_ch++) {
        for (int p = p_start; p <= p_max; p += stride) {
            int i_in = (h_temp - p) / stride;
            for (int q = q_start; q <= q_max; q += stride) {
                int j_in = (w_temp - q) / stride;
                
                // Coalesced weight access using out_ch_mod
                int weight_idx = ((in_ch * out_channels_per_group + out_ch_mod) * kernel_size + p) * kernel_size + q;
                int input_idx = ((b * in_channels + in_ch) * height_in + i_in) * width_in + j_in;
                
                out_val += input[input_idx] * weight[weight_idx];
            }
        }
    }

    if (bias_present) out_val += bias[out_ch];

    // Coalesced write to output
    int output_idx = ((b * out_channels + out_ch) * height_out + h) * width_out + w;
    output[output_idx] = out_val;
}

torch::Tensor conv_transpose2d_forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int64_t stride,
    int64_t padding,
    int64_t output_padding,
    int64_t groups
) {
    TORCH_CHECK(x.is_cuda() && weight.is_cuda(), "Inputs must be on CUDA");
    TORCH_CHECK(x.is_contiguous() && weight.is_contiguous(), "Inputs must be contiguous");

    int batch = x.size(0);
    int in_channels = x.size(1);
    int height_in = x.size(2);
    int width_in = x.size(3);
    int kernel_size = weight.size(2);
    int out_channels = weight.size(1) * groups;

    int height_out = (height_in - 1) * stride - 2 * padding + kernel_size + output_padding;
    int width_out = (width_in - 1) * stride - 2 * padding + kernel_size + output_padding;

    auto output = torch::zeros({batch, out_channels, height_out, width_out}, x.options());

    int total_threads = batch * out_channels * height_out * width_out;
    int block_size = 256;
    int grid_size = (total_threads + block_size - 1) / block_size;

    convTranspose2dCoalescedKernel<<<grid_size, block_size>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.has_value() ? bias->data_ptr<float>() : nullptr,
        output.data_ptr<float>(),
        batch, in_channels, out_channels,
        height_in, width_in,
        kernel_size, stride, padding,
        height_out, width_out,
        groups, bias.has_value()
    );

    TORCH_CHECK(cudaGetLastError() == cudaSuccess, "Kernel launch failed");
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &conv_transpose2d_forward, "ConvTranspose2d with coalesced memory access");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.040 inst/cycle 0.000 5
Executed Ipc Elapsed 3.030 inst/cycle 0.000 5
Issue Slots Busy 75.910 % 0.000 5
Issued Ipc Active 3.040 inst/cycle 0.000 5
SM Busy 75.910 % 0.000 5
Memory Throughput 8217459046.320 byte/second 356105226889423.750 5
Mem Busy 14.330 % 0.000 5
Max Bandwidth 14.040 % 0.000 5
L1/TEX Hit Rate 99.680 % 0.000 5
L2 Hit Rate 96.626 % 0.019 5
Mem Pipes Busy 37.828 % 0.000 5
Warp Cycles Per Issued Instruction 15.664 cycle 0.000 5
Warp Cycles Per Executed Instruction 15.666 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.220 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 74.322 % 0.000 5
Achieved Active Warps Per SM 47.570 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (57.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 238705.79 μs
Device Time 3377.61 μs
Self CPU Time 51.30 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 67559.46 μs
Device Time 26988.30 μs
Self CPU Time 2874.46 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 8184338.61 μs
Device Time 120187.82 μs
Self CPU Time 5684.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 8178655.86 μs
Device Time 120187.82 μs
Self CPU Time 8249.41 μs
Self Device Time 120187.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 8175737.85 μs
Device Time 3230.99 μs
Self CPU Time 8175737.85 μs
Self Device Time 3230.99 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
convTranspose2dCoalescedKernel(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int, int, bool)
CPU Time 0.00 μs
Device Time 9925314.16 μs
Self CPU Time 0.00 μs
Self Device Time 9925314.16 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 1773766.76 μs
Device Time 101.47 μs
Self CPU Time 1773766.76 μs
Self Device Time 101.47 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 93199.52 μs
Self CPU Time 0.00 μs
Self Device Time 93199.52 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45301 warnings generated when compiling for host.
Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:10:5 bugprone-easily-swappable-parameters
10 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:10:31: note: the first parameter in the range is 'weight'
10 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:11:31: note: the last parameter in the range is 'bias'
11 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:13:5: warning: 2 adjacent parameters of 'convTranspose2dCoalescedKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | int batch,
| ^~~~~~~~~~
14 | int in_channels,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:13:9: note: the first parameter in the range is 'batch'
13 | int batch,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:14:9: note: the last parameter in the range is 'in_channels'
14 | int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:15:5: warning: 2 adjacent parameters of 'convTranspose2dCoalescedKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
15 | int out_channels,
| ^~~~~~~~~~~~~~~~~
16 | int height_in,
| ~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:15:9: note: the first parameter in the range is 'out_channels'
15 | int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:16:9: note: the last parameter in the range is 'height_in'
16 | int height_in,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:17:5: warning: 2 adjacent parameters of 'convTranspose2dCoalescedKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
17 | int width_in,
| ^~~~~~~~~~~~~
18 | int kernel_size,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:17:9: note: the first parameter in the range is 'width_in'
17 | int width_in,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:18:9: note: the last parameter in the range is 'kernel_size'
18 | int kernel_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:19:5: warning: 3 adjacent parameters of 'convTranspose2dCoalescedKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | int stride,
| ^~~~~~~~~~~
20 | int padding,
| ~~~~~~~~~~~~
21 | int height_out,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:19:9: note: the first parameter in the range is 'stride'
19 | int stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:21:9: note: the last parameter in the range is 'height_out'
21 | int height_out,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:22:5: warning: 2 adjacent parameters of 'convTranspose2dCoalescedKernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int width_out,
| ^~~~~~~~~~~~~~
23 | int groups,
| ~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:22:9: note: the first parameter in the range is 'width_out'
22 | int width_out,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:23:9: note: the last parameter in the range is 'groups'
23 | int groups,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:26:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:85:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
85 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:86:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
86 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:90:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward' of similar type ('int64_t') are easily swapped by mistake [bugprone-easily-swappable-parameters]
90 | int64_t output_padding,
| ^~~~~~~~~~~~~~~~~~~~~~~
91 | int64_t groups
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:90:13: note: the first parameter in the range is 'output_padding'
90 | int64_t output_padding,
| ^~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:91:13: note: the last parameter in the range is 'groups'
91 | int64_t groups
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:96:17: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | int batch = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:97:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:98:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | int height_in = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:99:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int width_in = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:100:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | int kernel_size = weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:101:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | int out_channels = weight.size(1) * groups;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:103:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | int height_out = (height_in - 1) * stride - 2 * padding + kernel_size + output_padding;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:104:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
104 | int width_out = (width_in - 1) * stride - 2 * padding + kernel_size + output_padding;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:119:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
119 | kernel_size, stride, padding,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:119:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
119 | kernel_size, stride, padding,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250211_optimize_b5_s4_e1_v2/level_1/task_57/b4_s3_conv_transposed2d_coalesced/base/base.cu:121:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
121 | groups, bias.has_value()
| ^