← Back to Leaderboard

The AI CUDA Engineer 👷

76_conv_standard_1D_dilated_strided__conv1d_warp_uniform_base_base

Level 1 • Task 76
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    dilation: int,
) -> torch.Tensor:
    """
    Performs a standard 1D convolution operation with asymmetric input and a square kernel, potentially dilated and strided.


    Args:
        x (torch.Tensor): Input tensor.
        weight (torch.Tensor): Weight tensor.
        bias (torch.Tensor): Bias tensor.
        stride (int): Stride of the convolution.
        dilation (int): Dilation of the convolution.

    Returns:
        torch.Tensor: Output tensor.
    """
    return F.conv1d(x, weight, bias=bias, stride=stride, dilation=dilation)


class Model(nn.Module):
    """
    Performs a standard 1D convolution operation with asymmetric input and a square kernel, potentially dilated and strided.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        dilation (int): Spacing between kernel elements.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        dilation: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        conv = nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            dilation=dilation,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None

        self.stride = stride
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Performs the 1D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, length).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, length_out).
        """
        return fn(x, self.weight, self.bias, self.stride, self.dilation)


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
length = 256
stride = 3
dilation = 4
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, dilation, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a standard 1D convolution operation with asymmetric input and a square kernel, potentially dilated and strided.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        dilation: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv1d = nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 1D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, length).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, length_out).
        """
        return self.conv1d(x)


# Constants
batch_size = 16
in_channels = 3
out_channels = 64
kernel_size = 3
length = 256
stride = 3
dilation = 4
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, dilation, bias]

Kernel Information

Related Kernels (Level 1, Task 76 • 76_conv_standard_1D_dilated_strided__)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 conv1d_warp_uniform_base_base 0.01 1.88 8.37
🥇 optimized_conv1d_base 0.01 1.88 8.37
🥇 76_conv_1d_branchless_base 0.01 1.88 8.37
🥇 76_conv_1d_branchless_edit_1 0.01 1.88 8.37
🥇 modular_conv1d_base 0.01 1.88 8.37
6 conv1d_grid_stride_base 0.01 1.65 7.32
6 conv1d_unrolled_base 0.01 1.65 7.32
6 76_conv_standard_1D_dilated_strided_optimal_block_base 0.01 1.65 7.32
6 conv1d_ldg_align_opt_base 0.01 1.65 7.32
6 76_conv_standard_1D_dilated_strided__ 0.01 1.65 7.32
6 conv1d_blocksize_512_base 0.01 1.65 7.32
6 conv1d_shared_opt_base 0.01 1.65 7.32
6 conv1d_stride_loop_opt_base 0.01 1.65 7.32
6 grid_strided_conv1d_base 0.01 1.65 7.32
6 conv1d_memory_coalesce_base 0.01 1.65 7.32
6 conv1d_stride_loop_opt_base_base 0.01 1.65 7.32
6 hybrid_conv1d_kernel_base 0.01 1.65 7.32
6 conv1d_optimized_base 0.01 1.65 7.32
6 conv1d_ldg_optimized_base 0.01 1.65 7.32
6 conv1d_strided_loop_opt_base 0.01 1.65 7.32
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void conv1d_kernel(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int B,
    int in_channels,
    int in_size,
    int out_channels,
    int kernel_size,
    int out_size,
    int stride,
    int dilation
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int total_elements = B * out_channels * out_size;
    if (idx >= total_elements) return;

    // Calculate indices with minimal divergence
    int o = idx % out_size;
    int tmp = idx / out_size;
    int oc = tmp % out_channels;
    int b = tmp / out_channels;

    // Pre-calculate start and end positions for the convolution window
    int start_pos = o * stride;
    int end_pos = start_pos + (kernel_size - 1) * dilation;
    
    // Skip computation if entire window is out of bounds
    float sum = 0.0f;
    if (end_pos < in_size) {
        // Main convolution loop - no boundary checks needed
        for (int ic = 0; ic < in_channels; ++ic) {
            const float* x_base = x + b * (in_channels * in_size) + ic * in_size + start_pos;
            const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
            
            // Unroll small kernel sizes for better instruction scheduling
            #pragma unroll 4
            for (int k = 0; k < kernel_size; ++k) {
                sum += x_base[k * dilation] * w_base[k];
            }
        }
    } else {
        // Handle boundary case uniformly for the entire warp
        for (int ic = 0; ic < in_channels; ++ic) {
            const float* x_base = x + b * (in_channels * in_size) + ic * in_size;
            const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
            
            #pragma unroll 4
            for (int k = 0; k < kernel_size; ++k) {
                int input_pos = start_pos + k * dilation;
                // Use multiplication instead of branching
                bool valid = input_pos < in_size;
                sum += valid * x_base[input_pos] * w_base[k];
            }
        }
    }

    // Uniform bias addition across warp
    if (bias != nullptr) {
        sum += bias[oc];
    }
    
    output[b * (out_channels * out_size) + oc * out_size + o] = sum;
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int dilation
) {
    TORCH_CHECK(x.device().is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.device().is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(x.is_contiguous(), "x must be contiguous");
    TORCH_CHECK(weight.is_contiguous(), "weight must be contiguous");
    TORCH_CHECK(x.dim() == 3, "x must be 3D");
    TORCH_CHECK(weight.dim() == 3, "weight must be 3D");
    TORCH_CHECK(weight.size(1) == x.size(1), "Input channels mismatch");

    if (bias.has_value()) {
        TORCH_CHECK(bias->device().is_cuda(), "bias must be a CUDA tensor");
        TORCH_CHECK(bias->is_contiguous(), "bias must be contiguous");
        TORCH_CHECK(bias->dim() == 1, "bias must be 1D");
        TORCH_CHECK(bias->size(0) == weight.size(0), "Bias size mismatch");
    }

    int B = x.size(0);
    int in_channels = x.size(1);
    int in_size = x.size(2);
    int out_channels = weight.size(0);
    int kernel_size = weight.size(2);

    int out_size = (in_size - dilation * (kernel_size - 1) - 1) / stride + 1;
    TORCH_CHECK(out_size > 0, "Invalid output size");

    auto output = torch::empty({B, out_channels, out_size}, x.options());
    if (output.numel() == 0) return output;

    const float* x_data = x.data_ptr<float>();
    const float* weight_data = weight.data_ptr<float>();
    const float* bias_data = bias ? bias->data_ptr<float>() : nullptr;
    float* output_data = output.data_ptr<float>();

    // Ensure block size is warp-aligned
    int threads = 256;
    int blocks = (B * out_channels * out_size + threads - 1) / threads;

    conv1d_kernel<<<blocks, threads>>>(
        x_data,
        weight_data,
        bias_data,
        output_data,
        B,
        in_channels,
        in_size,
        out_channels,
        kernel_size,
        out_size,
        stride,
        dilation
    );

    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "Kernel launch error: ", cudaGetErrorString(err));

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "1D convolution forward (CUDA) with uniform warp execution");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.098 inst/cycle 0.001 5
Executed Ipc Elapsed 0.630 inst/cycle 0.000 5
Issue Slots Busy 28.328 % 0.398 5
Issued Ipc Active 1.134 inst/cycle 0.001 5
SM Busy 28.328 % 0.398 5
Memory Throughput 11201475349.248 byte/second 16462327042250758.000 5
Mem Busy 8.098 % 0.012 5
Max Bandwidth 5.892 % 0.003 5
L1/TEX Hit Rate 87.020 % 0.000 5
L2 Hit Rate 97.964 % 0.177 5
Mem Pipes Busy 10.964 % 0.020 5
Warp Cycles Per Issued Instruction 16.160 cycle 0.030 5
Warp Cycles Per Executed Instruction 16.702 cycle 0.031 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.180 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 28.860 % 0.063 5
Achieved Active Warps Per SM 18.470 warp 0.025 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (23.2%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (28.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 557061.26 μs
Device Time 6.40 μs
Self CPU Time 57.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 557003.56 μs
Device Time 6.40 μs
Self CPU Time 98.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 556777.48 μs
Device Time 0.00 μs
Self CPU Time 105.10 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 555140.24 μs
Device Time 0.00 μs
Self CPU Time 555140.24 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 473522.43 μs
Device Time 708.63 μs
Self CPU Time 473522.43 μs
Self Device Time 708.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv1d_kernel(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 37961.02 μs
Self CPU Time 0.00 μs
Self Device Time 37961.02 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 17061.28 μs
Device Time 118159.37 μs
Self CPU Time 17061.28 μs
Self Device Time 118159.37 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 65907.70 μs
Device Time 610409.23 μs
Self CPU Time 13176.83 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 52732.11 μs
Device Time 610409.23 μs
Self CPU Time 17576.88 μs
Self Device Time 610409.23 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 610488.40 μs
Self CPU Time 0.00 μs
Self Device Time 610488.40 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45300 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:6:5 bugprone-easily-swappable-parameters
6 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:6:31: note: the first parameter in the range is 'x'
6 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:8:31: note: the last parameter in the range is 'bias'
8 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:10:5: warning: 2 adjacent parameters of 'conv1d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
10 | int B,
| ^~~~~~
11 | int in_channels,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:10:9: note: the first parameter in the range is 'B'
10 | int B,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:11:9: note: the last parameter in the range is 'in_channels'
11 | int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:12:5: warning: 3 adjacent parameters of 'conv1d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
12 | int in_size,
| ^~~~~~~~~~~~
13 | int out_channels,
| ~~~~~~~~~~~~~~~~~
14 | int kernel_size,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:12:9: note: the first parameter in the range is 'in_size'
12 | int in_size,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:14:9: note: the last parameter in the range is 'kernel_size'
14 | int kernel_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:15:5: warning: 3 adjacent parameters of 'conv1d_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
15 | int out_size,
| ^~~~~~~~~~~~~
16 | int stride,
| ~~~~~~~~~~~
17 | int dilation
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:15:9: note: the first parameter in the range is 'out_size'
15 | int out_size,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:17:9: note: the last parameter in the range is 'dilation'
17 | int dilation
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:19:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
19 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:38:35: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
38 | const float* x_base = x + b * (in_channels * in_size) + ic * in_size + start_pos;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:38:69: note: make conversion explicit to silence this warning
4 | const float* x_base = x + b * (in_channels * in_size) + ic * in_size + start_pos;
| ^~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:38:69: note: perform multiplication in a wider type
38 | const float* x_base = x + b * (in_channels * in_size) + ic * in_size + start_pos;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:39:35: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
39 | const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:39:79: note: make conversion explicit to silence this warning
39 | const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:39:79: note: perform multiplication in a wider type
39 | const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:44:24: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
44 | sum += x_base[k * dilation] * w_base[k];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:44:31: note: make conversion explicit to silence this warning
44 | sum += x_base[k * dilation] * w_base[k];
| ^~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:44:31: note: perform multiplication in a wider type
44 | sum += x_base[k * dilation] * w_base[k];
| ^
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:50:35: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
50 | const float* x_base = x + b * (in_channels * in_size) + ic * in_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:50:69: note: make conversion explicit to silence this warning
50 | const float* x_base = x + b * (in_channels * in_size) + ic * in_size;
| ^~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:50:69: note: perform multiplication in a wider type
50 | const float* x_base = x + b * (in_channels * in_size) + ic * in_size;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:51:35: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
51 | const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:51:79: note: make conversion explicit to silence this warning
51 | const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:51:79: note: perform multiplication in a wider type
51 | const float* w_base = weight + oc * (in_channels * kernel_size) + ic * kernel_size;
| ^~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:58:24: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
58 | sum += valid * x_base[input_pos] * w_base[k];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:72:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:73:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
73 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:93:13: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
93 | int B = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:94:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
94 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:95:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | int in_size = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:96:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | int out_channels = weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_76/b3_s1_conv1d_warp_uniform_base/base/base.cu:97:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | int kernel_size = weight.size(2);
| ^