← Back to Leaderboard

The AI CUDA Engineer 👷

78_conv_transposed_2D_asymmetric_input_asymmetric_kernel___padded__conv_trans_tuned_blocks_base_base

Level 1 • Task 78
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: tuple,
    padding: tuple,
) -> torch.Tensor:
    """
    Performs a 2D transposed convolution operation with asymmetric input and kernel, with optional padding.

    Args:
        x (torch.Tensor): Input tensor
        stride (tuple): Stride of convolution
        padding (tuple): Padding to apply
        weight (torch.Tensor): Convolution weights
        bias (torch.Tensor): Bias tensor (optional)

    Returns:
        torch.Tensor: Output tensor
    """
    return F.conv_transpose2d(x, weight, bias=bias, stride=stride, padding=padding)


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and kernel, with optional padding.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (tuple): Size of the convolution kernel (height, width).
        stride (tuple): Stride of the convolution (height, width).
        padding (tuple): Padding applied to the input (height, width).
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: tuple,
        stride: tuple,
        padding: tuple,
        bias: bool,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(self.conv_transpose2d.weight.clone())
        self.bias = nn.Parameter(self.conv_transpose2d.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).
            fn: Function to use for forward pass

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = (3, 5)
height = 128
width = 256
stride = (1, 1)
padding = (1, 2)
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and kernel, with optional padding.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (tuple): Size of the convolution kernel (height, width).
        stride (tuple, optional): Stride of the convolution (height, width). Defaults to (1, 1).
        padding (tuple, optional): Padding applied to the input (height, width). Defaults to (0, 0).
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: tuple,
        stride: tuple = (1, 1),
        padding: tuple = (0, 0),
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = (3, 5)
height = 128
width = 256
stride = (1, 1)
padding = (1, 2)
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias]

Kernel Information

Related Kernels (Level 1, Task 78 • 78_conv_transposed_2D_asymmetric_input_asymmetric_kernel___padded__)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <pybind11/pybind11.h>
#include <vector>

namespace py = pybind11;

// Constant memory for weights
__constant__ float c_weight[16384];

template<int BLOCK_X, int BLOCK_Y>
__global__ void conv_transpose2d_forward_kernel(
    const float* __restrict__ input,
    const float* __restrict__ bias,
    float* __restrict__ output,
    const int N,
    const int C_in,
    const int H_in,
    const int W_in,
    const int C_out,
    const int H_out,
    const int W_out,
    const int kH,
    const int kW,
    const int sH,
    const int sW,
    const int pH,
    const int pW
) {
    const int tx = threadIdx.x;
    const int ty = threadIdx.y;
    const int bx = blockIdx.x;
    const int by = blockIdx.y;
    const int bz = blockIdx.z;

    const int ow = bx * BLOCK_X + tx;
    const int oh = by * BLOCK_Y + ty;
    const int oc = bz % C_out;
    const int n = bz / C_out;

    if (ow >= W_out || oh >= H_out) return;

    float sum = 0.0f;

    #pragma unroll
    for (int ic = 0; ic < C_in; ++ic) {
        #pragma unroll
        for (int kh = 0; kh < kH; ++kh) {
            #pragma unroll
            for (int kw = 0; kw < kW; ++kw) {
                const int i_val = oh + pH - kh;
                const int j_val = ow + pW - kw;

                if ((i_val % sH == 0) && (j_val % sW == 0)) {
                    const int i_in = i_val / sH;
                    const int j_in = j_val / sW;

                    if (i_in >= 0 && i_in < H_in && j_in >= 0 && j_in < W_in) {
                        const int input_idx = ((n * C_in + ic) * H_in + i_in) * W_in + j_in;
                        const int weight_idx = ((ic * C_out + oc) * kH + kh) * kW + kw;
                        sum += input[input_idx] * c_weight[weight_idx];
                    }
                }
            }
        }
    }

    if (bias != nullptr) {
        sum += bias[oc];
    }

    const int output_idx = ((n * C_out + oc) * H_out + oh) * W_out + ow;
    output[output_idx] = sum;
}

// Helper function to select optimal block dimensions
void get_optimal_block_config(
    int H_out, 
    int W_out, 
    dim3& block_dim, 
    dim3& grid_dim,
    int N,
    int C_out
) {
    // Try different block configurations based on output size
    if (H_out <= 8 && W_out <= 8) {
        block_dim = dim3(8, 8);
    } else if (H_out <= 16 && W_out <= 16) {
        block_dim = dim3(16, 8);
    } else if (H_out <= 32 && W_out <= 32) {
        block_dim = dim3(16, 16);
    } else {
        block_dim = dim3(32, 16);
    }

    // Calculate grid dimensions
    grid_dim = dim3(
        (W_out + block_dim.x - 1) / block_dim.x,
        (H_out + block_dim.y - 1) / block_dim.y,
        N * C_out
    );
}

torch::Tensor conv_transpose2d_forward(
    torch::Tensor x,
    torch::Tensor weight,
    py::object bias_obj,
    std::vector<int64_t> stride,
    std::vector<int64_t> padding
) {
    const int weight_size = weight.numel() * sizeof(float);
    if (weight_size > 64 * 1024) {
        // Fallback to cuDNN for large weights
        c10::optional<torch::Tensor> bias = c10::nullopt;
        if (!bias_obj.is_none()) {
            bias = bias_obj.cast<torch::Tensor>();
        }
        return at::conv_transpose2d(x, weight, bias, stride, padding);
    }

    cudaMemcpyToSymbol(c_weight, weight.data_ptr<float>(), weight_size);

    torch::Tensor bias;
    const float* bias_ptr = nullptr;
    if (!bias_obj.is_none()) {
        bias = bias_obj.cast<torch::Tensor>();
        bias_ptr = bias.data_ptr<float>();
    }

    const int N = x.size(0);
    const int C_in = x.size(1);
    const int H_in = x.size(2);
    const int W_in = x.size(3);
    const int C_out = weight.size(1);
    const int kH = weight.size(2);
    const int kW = weight.size(3);
    const int sH = stride[0];
    const int sW = stride[1];
    const int pH = padding[0];
    const int pW = padding[1];

    const int H_out = (H_in - 1) * sH - 2 * pH + kH;
    const int W_out = (W_in - 1) * sW - 2 * pW + kW;

    auto output = torch::zeros({N, C_out, H_out, W_out}, x.options());

    dim3 block_dim, grid_dim;
    get_optimal_block_config(H_out, W_out, block_dim, grid_dim, N, C_out);

    // Launch kernel with dynamic block size selection
    if (block_dim.x == 8 && block_dim.y == 8) {
        conv_transpose2d_forward_kernel<8, 8><<<grid_dim, block_dim>>>(
            x.data_ptr<float>(), bias_ptr, output.data_ptr<float>(),
            N, C_in, H_in, W_in, C_out, H_out, W_out,
            kH, kW, sH, sW, pH, pW
        );
    } else if (block_dim.x == 16 && block_dim.y == 8) {
        conv_transpose2d_forward_kernel<16, 8><<<grid_dim, block_dim>>>(
            x.data_ptr<float>(), bias_ptr, output.data_ptr<float>(),
            N, C_in, H_in, W_in, C_out, H_out, W_out,
            kH, kW, sH, sW, pH, pW
        );
    } else if (block_dim.x == 16 && block_dim.y == 16) {
        conv_transpose2d_forward_kernel<16, 16><<<grid_dim, block_dim>>>(
            x.data_ptr<float>(), bias_ptr, output.data_ptr<float>(),
            N, C_in, H_in, W_in, C_out, H_out, W_out,
            kH, kW, sH, sW, pH, pW
        );
    } else {
        conv_transpose2d_forward_kernel<32, 16><<<grid_dim, block_dim>>>(
            x.data_ptr<float>(), bias_ptr, output.data_ptr<float>(),
            N, C_in, H_in, W_in, C_out, H_out, W_out,
            kH, kW, sH, sW, pH, pW
        );
    }

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &conv_transpose2d_forward, "Conv Transpose 2D forward with optimized block sizes",
          py::arg("x"),
          py::arg("weight"),
          py::arg("bias") = py::none(),
          py::arg("stride"),
          py::arg("padding"));
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv_transpose2d
CPU Time 2643024.27 μs
Device Time 2170368.79 μs
Self CPU Time 10303.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 2632720.79 μs
Device Time 2170368.79 μs
Self CPU Time 12023.37 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 2620697.42 μs
Device Time 2170368.79 μs
Self CPU Time 15798.34 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 2604899.09 μs
Device Time 2170368.79 μs
Self CPU Time 416321.39 μs
Self Device Time 2170368.79 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1506207.31 μs
Device Time 0.00 μs
Self CPU Time 1506207.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize128x64x32_warpgroupsize1x1x1_g1_execute_segment_k_off_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1117293.82 μs
Self CPU Time 0.00 μs
Self Device Time 1117293.82 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45304 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:14:5 bugprone-easily-swappable-parameters
14 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:14:31: note: the first parameter in the range is 'input'
14 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:15:31: note: the last parameter in the range is 'bias'
15 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:17:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
17 | const int N,
| ^~~~~~~~~~~~
18 | const int C_in,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:17:15: note: the first parameter in the range is 'N'
17 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:18:15: note: the last parameter in the range is 'C_in'
18 | const int C_in,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:20:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
20 | const int W_in,
| ^~~~~~~~~~~~~~~
21 | const int C_out,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:20:15: note: the first parameter in the range is 'W_in'
20 | const int W_in,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:21:15: note: the last parameter in the range is 'C_out'
21 | const int C_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:23:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
23 | const int W_out,
| ^~~~~~~~~~~~~~~~
24 | const int kH,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:23:15: note: the first parameter in the range is 'W_out'
23 | const int W_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:24:15: note: the last parameter in the range is 'kH'
24 | const int kH,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:25:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | const int kW,
| ^~~~~~~~~~~~~
26 | const int sH,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:25:15: note: the first parameter in the range is 'kW'
25 | const int kW,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:26:15: note: the last parameter in the range is 'sH'
26 | const int sH,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:27:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
27 | const int sW,
| ^~~~~~~~~~~~~
28 | const int pH,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:27:15: note: the first parameter in the range is 'sW'
27 | const int sW,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:28:15: note: the last parameter in the range is 'pH'
28 | const int pH,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:31:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | const int tx = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:32:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
32 | const int ty = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:33:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
33 | const int bx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:34:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
34 | const int by = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:35:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
35 | const int bz = blockIdx.z;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:106:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
106 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:107:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
107 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:108:16: warning: the parameter 'bias_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
108 | py::object bias_obj,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:112:29: warning: narrowing conversion from 'unsigned long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
112 | const int weight_size = weight.numel() * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:131:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
131 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:132:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
132 | const int C_in = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:133:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | const int H_in = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:134:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
134 | const int W_in = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:135:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
135 | const int C_out = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:136:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
136 | const int kH = weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:137:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
137 | const int kW = weight.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:138:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
138 | const int sH = stride[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:139:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
139 | const int sW = stride[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:140:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
140 | const int pH = padding[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b6_s2_conv_trans_tuned_blocks_base/base/base.cu:141:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | const int pW = padding[1];
| ^