← Back to Leaderboard

The AI CUDA Engineer 👷

78_conv_transposed_2D_asymmetric_input_asymmetric_kernel___padded__optimized_conv_transpose2d_base

Level 1 • Task 78
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: tuple,
    padding: tuple,
) -> torch.Tensor:
    """
    Performs a 2D transposed convolution operation with asymmetric input and kernel, with optional padding.

    Args:
        x (torch.Tensor): Input tensor
        stride (tuple): Stride of convolution
        padding (tuple): Padding to apply
        weight (torch.Tensor): Convolution weights
        bias (torch.Tensor): Bias tensor (optional)

    Returns:
        torch.Tensor: Output tensor
    """
    return F.conv_transpose2d(x, weight, bias=bias, stride=stride, padding=padding)


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and kernel, with optional padding.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (tuple): Size of the convolution kernel (height, width).
        stride (tuple): Stride of the convolution (height, width).
        padding (tuple): Padding applied to the input (height, width).
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: tuple,
        stride: tuple,
        padding: tuple,
        bias: bool,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(self.conv_transpose2d.weight.clone())
        self.bias = nn.Parameter(self.conv_transpose2d.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).
            fn: Function to use for forward pass

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = (3, 5)
height = 128
width = 256
stride = (1, 1)
padding = (1, 2)
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and kernel, with optional padding.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (tuple): Size of the convolution kernel (height, width).
        stride (tuple, optional): Stride of the convolution (height, width). Defaults to (1, 1).
        padding (tuple, optional): Padding applied to the input (height, width). Defaults to (0, 0).
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: tuple,
        stride: tuple = (1, 1),
        padding: tuple = (0, 0),
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = (3, 5)
height = 128
width = 256
stride = (1, 1)
padding = (1, 2)
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height, width)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, bias]

Kernel Information

Related Kernels (Level 1, Task 78 • 78_conv_transposed_2D_asymmetric_input_asymmetric_kernel___padded__)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <pybind11/pybind11.h>
#include <vector>

namespace py = pybind11;

// Constant memory for weights
__constant__ float c_weight[16384];

// Kernel: each block computes one output element using collaborative reduction
// over the reduction axis (input channels * kernel height * kernel width).
// Uses warp-level shuffles and shared memory for efficient reduction.

template <int BLOCK_SIZE>
__global__ void conv_transpose2d_forward_kernel_optimized(
    const float* __restrict__ input,
    const float* __restrict__ bias,
    float* __restrict__ output,
    const int N,
    const int C_in,
    const int H_in,
    const int W_in,
    const int C_out,
    const int H_out,
    const int W_out,
    const int kH,
    const int kW,
    const int sH,
    const int sW,
    const int pH,
    const int pW
) {
    // Map blockIdx.x to an output element index
    int out_idx = blockIdx.x;
    if (out_idx >= N * C_out * H_out * W_out) return;

    int ow = out_idx % W_out;
    int oh = (out_idx / W_out) % H_out;
    int oc = (out_idx / (W_out * H_out)) % C_out;
    int n  = out_idx / (W_out * H_out * C_out);

    // Total reduction work per output: over input channels and kernel positions
    int total_work = C_in * kH * kW;
    float local_sum = 0.0f;

    // Each thread in the block processes a subset of the reduction iterations
    for (int i = threadIdx.x; i < total_work; i += BLOCK_SIZE) {
        int ic = i / (kH * kW);
        int rem = i % (kH * kW);
        int kh = rem / kW;
        int kw = rem % kW;

        int i_val = oh + pH - kh;
        int j_val = ow + pW - kw;
        if ((i_val % sH == 0) && (j_val % sW == 0)) {
            int i_in = i_val / sH;
            int j_in = j_val / sW;
            if (i_in >= 0 && i_in < H_in && j_in >= 0 && j_in < W_in) {
                int input_idx = ((n * C_in + ic) * H_in + i_in) * W_in + j_in;
                int weight_idx = ((ic * C_out + oc) * kH + kh) * kW + kw;
                local_sum += input[input_idx] * c_weight[weight_idx];
            }
        }
    }

    // Intra-warp reduction using shuffle primitives
    unsigned int mask = 0xffffffff;
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        local_sum += __shfl_down_sync(mask, local_sum, offset);
    }

    int lane = threadIdx.x % warpSize;
    int warp_id = threadIdx.x / warpSize;

    // Shared memory to store warp-level sums (max 32 warps assumed)
    __shared__ float shared_data[32];
    if (lane == 0) {
        shared_data[warp_id] = local_sum;
    }
    __syncthreads();

    // Final reduction across warps: have first few threads reduce the warp sums
    float block_sum = 0.0f;
    int num_warps = BLOCK_SIZE / warpSize;
    if (threadIdx.x < num_warps) {
        block_sum = shared_data[threadIdx.x];
        for (int offset = warpSize / 2; offset > 0; offset /= 2) {
            block_sum += __shfl_down_sync(mask, block_sum, offset);
        }
        if (threadIdx.x == 0) {
            if (bias != nullptr) {
                block_sum += bias[oc];
            }
            output[out_idx] = block_sum;
        }
    }
}


// Host function: sets up and launches the kernel

torch::Tensor conv_transpose2d_forward(
    torch::Tensor x,
    torch::Tensor weight,
    py::object bias_obj,
    std::vector<int64_t> stride,
    std::vector<int64_t> padding
) {
    int weight_size = weight.numel() * sizeof(float);
    const int max_const_size = 64 * 1024;
    if (weight_size > max_const_size) {
        c10::optional<torch::Tensor> bias = c10::nullopt;
        if (!bias_obj.is_none()) {
            bias = bias_obj.cast<torch::Tensor>();
        }
        return at::conv_transpose2d(x, weight, bias, stride, padding);
    }
    
    cudaMemcpyToSymbol(c_weight, weight.data_ptr<float>(), weight_size);
    
    torch::Tensor bias;
    const float* bias_ptr = nullptr;
    if (!bias_obj.is_none()) {
        bias = bias_obj.cast<torch::Tensor>();
        bias_ptr = bias.data_ptr<float>();
    }
    
    const int N = x.size(0);
    const int C_in = x.size(1);
    const int H_in = x.size(2);
    const int W_in = x.size(3);
    
    const int C_out = weight.size(1);
    const int kH = weight.size(2);
    const int kW = weight.size(3);
    const int sH = stride[0];
    const int sW = stride[1];
    const int pH = padding[0];
    const int pW = padding[1];
    
    int H_out = (H_in - 1) * sH - 2 * pH + kH;
    int W_out = (W_in - 1) * sW - 2 * pW + kW;
    
    auto output = torch::zeros({N, C_out, H_out, W_out}, x.options());
    
    // Launch one block per output element
    const int total_output = N * C_out * H_out * W_out;
    const int BLOCK_SIZE = 256;
    dim3 grid(total_output);
    
    conv_transpose2d_forward_kernel_optimized<BLOCK_SIZE><<<grid, BLOCK_SIZE>>>(
        x.data_ptr<float>(),
        bias_ptr,
        output.data_ptr<float>(),
        N, C_in, H_in, W_in,
        C_out, H_out, W_out,
        kH, kW, sH, sW, pH, pW
    );
    
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &conv_transpose2d_forward, "Optimized Conv Transpose 2D forward",
          py::arg("x"),
          py::arg("weight"),
          py::arg("bias") = py::none(),
          py::arg("stride"),
          py::arg("padding"));
}
Performance Metrics
Metric Value Unit Variance Samples
Analysis Rules
Rule Description
Operation / Metric Value Unit
aten::conv_transpose2d
CPU Time 2444859.76 μs
Device Time 2184746.30 μs
Self CPU Time 10514.89 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 2434344.87 μs
Device Time 2184746.30 μs
Self CPU Time 12231.87 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 2422113.00 μs
Device Time 2184746.30 μs
Self CPU Time 16293.35 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::cudnn_convolution_transpose
CPU Time 2405819.65 μs
Device Time 2184746.30 μs
Self CPU Time 197120.92 μs
Self Device Time 2184746.30 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1533235.37 μs
Device Time 0.00 μs
Self CPU Time 1533235.37 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
sm90_xmma_dgrad_implicit_gemm_f32f32_tf32f32_f32_nhwckrsc_nhwc_tilesize128x64x32_warpgroupsize1x1x1_g1_execute_segment_k_off_kernel__5x_cudnn
CPU Time 0.00 μs
Device Time 1134645.90 μs
Self CPU Time 0.00 μs
Self Device Time 1134645.90 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45303 warnings generated when compiling for host.
Suppressed 45325 warnings (45278 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:18:5 bugprone-easily-swappable-parameters
18 | const float* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:18:31: note: the first parameter in the range is 'input'
18 | const float* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:19:31: note: the last parameter in the range is 'bias'
19 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:21:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
21 | const int N,
| ^~~~~~~~~~~~
22 | const int C_in,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:21:15: note: the first parameter in the range is 'N'
21 | const int N,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:22:15: note: the last parameter in the range is 'C_in'
22 | const int C_in,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:24:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
24 | const int W_in,
| ^~~~~~~~~~~~~~~
25 | const int C_out,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:24:15: note: the first parameter in the range is 'W_in'
24 | const int W_in,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:25:15: note: the last parameter in the range is 'C_out'
25 | const int C_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:27:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
27 | const int W_out,
| ^~~~~~~~~~~~~~~~
28 | const int kH,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:27:15: note: the first parameter in the range is 'W_out'
27 | const int W_out,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:28:15: note: the last parameter in the range is 'kH'
28 | const int kH,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:29:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
29 | const int kW,
| ^~~~~~~~~~~~~
30 | const int sH,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:29:15: note: the first parameter in the range is 'kW'
29 | const int kW,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:30:15: note: the last parameter in the range is 'sH'
30 | const int sH,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:31:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
31 | const int sW,
| ^~~~~~~~~~~~~
32 | const int pH,
| ~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:31:15: note: the first parameter in the range is 'sW'
31 | const int sW,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:32:15: note: the last parameter in the range is 'pH'
32 | const int pH,
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:36:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int out_idx = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:49:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
49 | for (int i = threadIdx.x; i < total_work; i += BLOCK_SIZE) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:74:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
74 | int lane = threadIdx.x % warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:75:19: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
75 | int warp_id = threadIdx.x / warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:105:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
105 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:106:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
106 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:107:16: warning: the parameter 'bias_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
107 | py::object bias_obj,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:111:23: warning: narrowing conversion from 'unsigned long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
111 | int weight_size = weight.numel() * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:130:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | const int N = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:131:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
131 | const int C_in = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:132:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
132 | const int H_in = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:133:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | const int W_in = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:135:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
135 | const int C_out = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:136:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
136 | const int kH = weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:137:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
137 | const int kW = weight.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:138:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
138 | const int sH = stride[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:139:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
139 | const int sW = stride[1];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:140:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
140 | const int pH = padding[0];
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_78/b8_s1_optimized_conv_transpose2d/base/base.cu:141:20: warning: narrowing conversion from 'value_type' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | const int pW = padding[1];
| ^