← Back to Leaderboard

The AI CUDA Engineer 👷

79_conv_transposed_1D_asymmetric_input_square_kernel___padded____strided____dilated__conv_transpose1d_shared_tile_sync_base

Level 1 • Task 79
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
) -> torch.Tensor:
    """
    Performs a transposed 1D convolution operation with asymmetric input and square kernel. Supports padding, striding, and dilation.

    Args:
        x (torch.Tensor): Input tensor
        weight (torch.Tensor): Convolution weights
        bias (torch.Tensor): Bias tensor (optional)
        stride (int): Stride of the convolution
        padding (int): Padding applied to the input
        dilation (int): Spacing between kernel elements

    Returns:
        torch.Tensor: Output tensor
    """
    return F.conv_transpose1d(
        x, weight, bias=bias, stride=stride, padding=padding, dilation=dilation
    )


class Model(nn.Module):
    """
    Performs a transposed 1D convolution operation with asymmetric input and square kernel.
    Supports padding, striding, and dilation.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        self.conv_transpose1d = nn.ConvTranspose1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(self.conv_transpose1d.weight.clone())
        self.bias = nn.Parameter(self.conv_transpose1d.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
length = 128
stride = 2
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a transposed 1D convolution operation with asymmetric input and square kernel.
    Supports padding, striding, and dilation.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv1d_transpose = nn.ConvTranspose1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the transposed 1D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, length).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, length_out).
        """
        return self.conv1d_transpose(x)


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
length = 128
stride = 2
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]

Kernel Information

Related Kernels (Level 1, Task 79 • 79_conv_transposed_1D_asymmetric_input_square_kernel___padded____strided____dilated__)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Helper function to compute the output length
inline int compute_output_length(int input_length, int stride, int padding, int dilation, int kernel_size) {
    return (input_length - 1) * stride - 2 * padding + dilation * (kernel_size - 1) + 1;
}

// Kernel that uses shared memory to load the weight tile for a fixed output channel
// Each block is mapped to a unique (batch, out_channel) pair. Threads in the block then compute
// the output values along the output length dimension.
// __syncthreads() is used only once after loading the shared memory tile to ensure consistency.

__global__ void conv_transpose1d_shared_kernel(
    const float* __restrict__ x_ptr,
    const float* __restrict__ weight_ptr,
    const float* __restrict__ bias_ptr,
    float* __restrict__ output_ptr,
    int in_channels,
    int input_length,
    int output_length,
    int kernel_size,
    int stride,
    int padding,
    int dilation
) {
    // Map each block to a unique (batch, output channel) pair
    int b = blockIdx.x;      // batch index
    int oc = blockIdx.y;     // output channel index

    // Allocate shared memory for the weight tile: [in_channels x kernel_size]
    extern __shared__ float s_weight[];
    int tile_size = in_channels * kernel_size;

    // Each thread loads part of the weight tile from global memory into shared memory
    // Global weight shape: [in_channels, out_channels, kernel_size]
    // For the given oc, the element weight[ic, oc, k] is at index: ic * (out_channels * kernel_size) + oc * kernel_size + k
    for (int idx = threadIdx.x; idx < tile_size; idx += blockDim.x) {
        int ic = idx / kernel_size;
        int k = idx % kernel_size;
        int weight_idx = ic * (gridDim.y * kernel_size) + oc * kernel_size + k;
        s_weight[idx] = weight_ptr[weight_idx];
    }
    __syncthreads(); // Ensure the shared weight tile is fully loaded before use

    // Each thread processes output elements along the output_length dimension
    for (int o = threadIdx.x; o < output_length; o += blockDim.x) {
        float sum = 0.0f;
        // Loop over kernel positions
        for (int k = 0; k < kernel_size; ++k) {
            int i_pos = o + padding - k * dilation;
            if (i_pos % stride != 0) continue;
            int i = i_pos / stride;
            if (i < 0 || i >= input_length) continue;
            // Accumulate over input channels
            for (int ic = 0; ic < in_channels; ++ic) {
                int x_idx = b * (in_channels * input_length) + ic * input_length + i;
                sum += x_ptr[x_idx] * s_weight[ic * kernel_size + k];
            }
        }
        if (bias_ptr) {
            sum += bias_ptr[oc];
        }
        int out_idx = b * (gridDim.y * output_length) + oc * output_length + o;
        output_ptr[out_idx] = sum;
    }
}

// Forward function for the CUDA kernel
torch::Tensor forward_cuda(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation
) {
    TORCH_CHECK(x.device().is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.device().is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(x.dim() == 3, "x must be 3D (batch, in_channels, input_length)");
    TORCH_CHECK(weight.dim() == 3, "weight must be 3D (in_channels, out_channels, kernel_size)");

    x = x.contiguous();
    weight = weight.contiguous();
    torch::Tensor bias_contig;
    const float* bias_ptr = nullptr;
    if (bias.has_value()) {
        bias_contig = bias->contiguous();
        TORCH_CHECK(bias_contig.device().is_cuda(), "bias must be a CUDA tensor");
        TORCH_CHECK(bias_contig.dim() == 1, "bias must be 1D");
        bias_ptr = bias_contig.data_ptr<float>();
    }

    int batch_size = x.size(0);
    int in_channels = x.size(1);
    int input_length = x.size(2);
    int out_channels = weight.size(1);
    int kernel_size = weight.size(2);

    TORCH_CHECK(weight.size(0) == in_channels, "weight's in_channels must match x's in_channels");
    if (bias.has_value()) {
        TORCH_CHECK(bias_contig.size(0) == out_channels, "bias size must match out_channels");
    }

    int output_length = compute_output_length(input_length, stride, padding, dilation, kernel_size);
    auto output = torch::zeros({batch_size, out_channels, output_length}, x.options());

    // Configure grid: each block computes one (batch, out_channel) pair
    dim3 grid(batch_size, out_channels);
    int threads_per_block = 256;
    // Shared memory size needed per block: in_channels * kernel_size * sizeof(float)
    size_t shared_mem_size = in_channels * kernel_size * sizeof(float);

    conv_transpose1d_shared_kernel<<<grid, threads_per_block, shared_mem_size>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias_ptr,
        output.data_ptr<float>(),
        in_channels,
        input_length,
        output_length,
        kernel_size,
        stride,
        padding,
        dilation
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward_cuda, "ConvTranspose1D forward (CUDA) with shared memory optimization",
          py::arg("x"), py::arg("weight"), py::arg("bias") = py::none(),
          py::arg("stride"), py::arg("padding"), py::arg("dilation"));
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.442 inst/cycle 0.000 5
Executed Ipc Elapsed 2.016 inst/cycle 0.000 5
Issue Slots Busy 61.466 % 0.076 5
Issued Ipc Active 2.460 inst/cycle 0.000 5
SM Busy 61.466 % 0.076 5
Memory Throughput 17271809692.770 byte/second 6842965512488033.000 5
Mem Busy 47.260 % 0.067 5
Max Bandwidth 45.926 % 0.054 5
L1/TEX Hit Rate 84.304 % 0.000 5
L2 Hit Rate 103.436 % 0.570 5
Mem Pipes Busy 45.916 % 0.060 5
Warp Cycles Per Issued Instruction 18.384 cycle 0.009 5
Warp Cycles Per Executed Instruction 18.492 cycle 0.010 5
Avg. Active Threads Per Warp 18.830 0.000 5
Avg. Not Predicated Off Threads Per Warp 18.030 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 23.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 70.592 % 0.060 5
Achieved Active Warps Per SM 45.180 warp 0.024 5
Analysis Rules
Rule Description
INF HighPipeUtilization FMA is the highest-utilized pipeline (33.8%) based on active cycles, taking into account the rates of its different instructions. It executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations. It is well-utilized, but should not be a bottleneck.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 18.8 threads being active per cycle. This is further reduced to 18.0 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (70.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 460615.65 μs
Device Time 16.71 μs
Self CPU Time 56.66 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 6283855.88 μs
Device Time 181115.58 μs
Self CPU Time 138784.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 6708203.96 μs
Device Time 7221173.65 μs
Self CPU Time 318552.40 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 6389652.91 μs
Device Time 7221173.65 μs
Self CPU Time 391240.98 μs
Self Device Time 7221173.65 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6328785.64 μs
Device Time 2762.76 μs
Self CPU Time 6328785.64 μs
Self Device Time 2762.76 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv_transpose1d_shared_kernel(float const*, float const*, float const*, float*, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 1265220.95 μs
Self CPU Time 0.00 μs
Self Device Time 1265220.95 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 197095.08 μs
Device Time 1167425.26 μs
Self CPU Time 197095.08 μs
Self Device Time 1167425.26 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 7040058.07 μs
Self CPU Time 0.00 μs
Self Device Time 7040058.07 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45295 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:16:5 bugprone-easily-swappable-parameters
16 | const float* __restrict__ x_ptr,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17 | const float* __restrict__ weight_ptr,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18 | const float* __restrict__ bias_ptr,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:16:31: note: the first parameter in the range is 'x_ptr'
16 | const float* __restrict__ x_ptr,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:18:31: note: the last parameter in the range is 'bias_ptr'
18 | const float* __restrict__ bias_ptr,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:21:5: warning: 5 adjacent parameters of 'conv_transpose1d_shared_kernel' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
21 | int input_length,
| ^~~~~~~~~~~~~~~~~
22 | int output_length,
| ~~~~~~~~~~~~~~~~~~
23 | int kernel_size,
| ~~~~~~~~~~~~~~~~
24 | int stride,
| ~~~~~~~~~~~
25 | int padding,
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:21:9: note: the first parameter in the range is 'input_length'
21 | int input_length,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:25:9: note: the last parameter in the range is 'padding'
25 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:29:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
29 | int b = blockIdx.x; // batch index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:30:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | int oc = blockIdx.y; // output channel index
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:39:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | for (int idx = threadIdx.x; idx < tile_size; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:39:57: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
39 | for (int idx = threadIdx.x; idx < tile_size; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:42:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
42 | int weight_idx = ic * (gridDim.y * kernel_size) + oc * kernel_size + k;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:48:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | for (int o = threadIdx.x; o < output_length; o += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:48:55: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | for (int o = threadIdx.x; o < output_length; o += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:65:23: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
65 | int out_idx = b * (gridDim.y * output_length) + oc * output_length + o;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:95:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
95 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:96:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:97:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
97 | int input_length = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:98:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | int out_channels = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:99:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int kernel_size = weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:113:30: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
113 | size_t shared_mem_size = in_channels * kernel_size * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:113:30: note: make conversion explicit to silence this warning
4 | size_t shared_mem_size = in_channels * kernel_size * sizeof(float);
| ^~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250207_optimize_b5_s4_e1_sweep/level_1/task_79/b5_s3_conv_transpose1d_shared_tile_sync/base/base.cu:113:30: note: perform multiplication in a wider type
113 | size_t shared_mem_size = in_channels * kernel_size * sizeof(float);
| ^~~~~~~~~~~
| static_cast<long>( )