← Back to Leaderboard

The AI CUDA Engineer 👷

79_conv_transposed_1D_asymmetric_input_square_kernel___padded____strided____dilated__shared_memory_conv_transpose1d_base

Level 1 • Task 79
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
) -> torch.Tensor:
    """
    Performs a transposed 1D convolution operation with asymmetric input and square kernel. Supports padding, striding, and dilation.

    Args:
        x (torch.Tensor): Input tensor
        weight (torch.Tensor): Convolution weights
        bias (torch.Tensor): Bias tensor (optional)
        stride (int): Stride of the convolution
        padding (int): Padding applied to the input
        dilation (int): Spacing between kernel elements

    Returns:
        torch.Tensor: Output tensor
    """
    return F.conv_transpose1d(
        x, weight, bias=bias, stride=stride, padding=padding, dilation=dilation
    )


class Model(nn.Module):
    """
    Performs a transposed 1D convolution operation with asymmetric input and square kernel.
    Supports padding, striding, and dilation.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Spacing between kernel elements.
        bias (bool): If `True`, adds a learnable bias to the output.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        bias: bool,
    ):
        super(Model, self).__init__()
        self.conv_transpose1d = nn.ConvTranspose1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

        # Copy the initialized parameters
        self.weight = nn.Parameter(self.conv_transpose1d.weight.clone())
        self.bias = nn.Parameter(self.conv_transpose1d.bias.clone()) if bias else None

        self.stride = stride
        self.padding = padding
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
length = 128
stride = 2
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a transposed 1D convolution operation with asymmetric input and square kernel.
    Supports padding, striding, and dilation.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the square convolution kernel.
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv1d_transpose = nn.ConvTranspose1d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the transposed 1D convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, length).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, length_out).
        """
        return self.conv1d_transpose(x)


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
length = 128
stride = 2
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, length)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]

Kernel Information

Related Kernels (Level 1, Task 79 • 79_conv_transposed_1D_asymmetric_input_square_kernel___padded____strided____dilated__)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Compute output length given convolution parameters
inline int compute_output_length(int input_length, int stride, int padding, int dilation, int kernel_size) {
    return (input_length - 1) * stride - 2 * padding + dilation * (kernel_size - 1) + 1;
}

// This kernel uses shared memory to hold the weight data for a specific out_channel,
// which is reused across all threads in the block. Each block is responsible for one
// (batch, out_channel) pair, and threads collaboratively load the weight slice into shared memory.

__global__ void conv_transpose1d_kernel_shared(
    const float* __restrict__ x_ptr,
    const float* __restrict__ weight_ptr,
    const float* __restrict__ bias_ptr,
    float* __restrict__ output_ptr,
    int batch_size,
    int in_channels,
    int out_channels,
    int input_length,
    int output_length,
    int kernel_size,
    int stride,
    int padding,
    int dilation
) {
    // grid configuration: blockIdx.y = batch index, blockIdx.x = output channel index
    int b = blockIdx.y;
    int oc = blockIdx.x;

    // Allocate shared memory for the weight slice for this (oc) across all in_channels and kernel positions
    extern __shared__ float sweight[]; // size: in_channels * kernel_size floats
    int weight_count = in_channels * kernel_size;
    
    // Cooperative loading: each thread loads multiple elements if needed
    for (int idx = threadIdx.x; idx < weight_count; idx += blockDim.x) {
        int ic = idx / kernel_size;
        int k = idx % kernel_size;
        // Weight layout: [in_channels, out_channels, kernel_size]
        sweight[idx] = weight_ptr[ic * out_channels * kernel_size + oc * kernel_size + k];
    }
    __syncthreads();

    // Each thread computes one or more output positions along the temporal dimension
    for (int o = threadIdx.x; o < output_length; o += blockDim.x) {
        float sum = 0.0f;
        // Iterate over kernel positions
        for (int k = 0; k < kernel_size; ++k) {
            int i_pos = o + padding - k * dilation;
            // Check if the computed input position aligns with the stride
            if (i_pos % stride != 0) continue;
            int i = i_pos / stride;
            if (i < 0 || i >= input_length) continue;
            // Sum over all input channels
            for (int ic = 0; ic < in_channels; ++ic) {
                // Fetch the preloaded weight from shared memory
                float w = sweight[ic * kernel_size + k];
                int x_idx = b * in_channels * input_length + ic * input_length + i;
                sum += x_ptr[x_idx] * w;
            }
        }
        // Add bias if provided
        if (bias_ptr) {
            sum += bias_ptr[oc];
        }
        int out_idx = b * out_channels * output_length + oc * output_length + o;
        output_ptr[out_idx] = sum;
    }
}


// Forward CUDA function using the shared memory optimized kernel
torch::Tensor forward_cuda(
    torch::Tensor x,
    torch::Tensor weight,
    torch::optional<torch::Tensor> bias,
    int stride,
    int padding,
    int dilation
) {
    TORCH_CHECK(x.device().is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(weight.device().is_cuda(), "weight must be a CUDA tensor");
    TORCH_CHECK(x.dim() == 3, "x must be 3D (batch, in_channels, input_length)");
    TORCH_CHECK(weight.dim() == 3, "weight must be 3D (in_channels, out_channels, kernel_size)");

    x = x.contiguous();
    weight = weight.contiguous();
    torch::Tensor bias_contig;
    const float* bias_ptr = nullptr;
    if (bias.has_value()) {
        bias_contig = bias->contiguous();
        TORCH_CHECK(bias_contig.device().is_cuda(), "bias must be a CUDA tensor");
        TORCH_CHECK(bias_contig.dim() == 1, "bias must be 1D");
        bias_ptr = bias_contig.data_ptr<float>();
    }
    
    int batch_size = x.size(0);
    int in_channels = x.size(1);
    int input_length = x.size(2);
    int out_channels = weight.size(1);
    int kernel_size = weight.size(2);
    TORCH_CHECK(weight.size(0) == in_channels, "weight's in_channels must match x's in_channels");
    if (bias.has_value()) {
        TORCH_CHECK(bias_contig.size(0) == out_channels, "bias size must match out_channels");
    }
    
    int output_length = compute_output_length(input_length, stride, padding, dilation, kernel_size);
    auto output = torch::zeros({batch_size, out_channels, output_length}, x.options());

    // Launch configuration: each block computes one output channel for one batch sample
    dim3 grid(out_channels, batch_size);
    int threads_per_block = 256;
    size_t shared_mem_size = in_channels * kernel_size * sizeof(float);

    conv_transpose1d_kernel_shared<<<grid, threads_per_block, shared_mem_size>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias_ptr,
        output.data_ptr<float>(),
        batch_size,
        in_channels,
        out_channels,
        input_length,
        output_length,
        kernel_size,
        stride,
        padding,
        dilation
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward_cuda, "ConvTranspose1D forward (CUDA) with shared memory",
          py::arg("x"), py::arg("weight"), py::arg("bias") = py::none(),
          py::arg("stride"), py::arg("padding"), py::arg("dilation"));
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.350 inst/cycle 0.000 5
Executed Ipc Elapsed 1.994 inst/cycle 0.000 5
Issue Slots Busy 59.248 % 0.102 5
Issued Ipc Active 2.368 inst/cycle 0.000 5
SM Busy 59.248 % 0.102 5
Memory Throughput 17085028951.964 byte/second 4086669952845110.500 5
Mem Busy 46.508 % 0.030 5
Max Bandwidth 45.256 % 0.029 5
L1/TEX Hit Rate 72.192 % 0.000 5
L2 Hit Rate 95.782 % 0.471 5
Mem Pipes Busy 45.256 % 0.029 5
Warp Cycles Per Issued Instruction 20.004 cycle 0.050 5
Warp Cycles Per Executed Instruction 20.162 cycle 0.051 5
Avg. Active Threads Per Warp 18.860 0.000 5
Avg. Not Predicated Off Threads Per Warp 18.060 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 23.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 73.918 % 0.054 5
Achieved Active Warps Per SM 47.310 warp 0.022 5
Analysis Rules
Rule Description
INF HighPipeUtilization FMA is the highest-utilized pipeline (32.6%) based on active cycles, taking into account the rates of its different instructions. It executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations. It is well-utilized, but should not be a bottleneck.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 18.9 threads being active per cycle. This is further reduced to 18.1 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (74.1%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
Operation / Metric Value Unit
aten::to
CPU Time 521770.15 μs
Device Time 16.90 μs
Self CPU Time 60.49 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 6171831.36 μs
Device Time 235921.91 μs
Self CPU Time 142603.22 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 6634900.40 μs
Device Time 7157660.03 μs
Self CPU Time 309160.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 6325741.23 μs
Device Time 7157660.03 μs
Self CPU Time 377130.15 μs
Self Device Time 7157660.03 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 6272457.58 μs
Device Time 2782.01 μs
Self CPU Time 6272457.58 μs
Self Device Time 2782.01 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv_transpose1d_kernel_shared(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 1256502.70 μs
Self CPU Time 0.00 μs
Self Device Time 1256502.70 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 198133.04 μs
Device Time 1147858.08 μs
Self CPU Time 198133.04 μs
Self Device Time 1147858.08 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 6921738.12 μs
Self CPU Time 0.00 μs
Self Device Time 6921738.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45294 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:15:5 bugprone-easily-swappable-parameters
15 | const float* __restrict__ x_ptr,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 | const float* __restrict__ weight_ptr,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17 | const float* __restrict__ bias_ptr,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:15:31: note: the first parameter in the range is 'x_ptr'
15 | const float* __restrict__ x_ptr,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:17:31: note: the last parameter in the range is 'bias_ptr'
17 | const float* __restrict__ bias_ptr,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:19:5: warning: 3 adjacent parameters of 'conv_transpose1d_kernel_shared' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | int batch_size,
| ^~~~~~~~~~~~~~~
20 | int in_channels,
| ~~~~~~~~~~~~~~~~
21 | int out_channels,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:19:9: note: the first parameter in the range is 'batch_size'
19 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:21:9: note: the last parameter in the range is 'out_channels'
21 | int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:22:5: warning: 5 adjacent parameters of 'conv_transpose1d_kernel_shared' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int input_length,
| ^~~~~~~~~~~~~~~~~
23 | int output_length,
| ~~~~~~~~~~~~~~~~~~
24 | int kernel_size,
| ~~~~~~~~~~~~~~~~
25 | int stride,
| ~~~~~~~~~~~
26 | int padding,
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:22:9: note: the first parameter in the range is 'input_length'
22 | int input_length,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:26:9: note: the last parameter in the range is 'padding'
26 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:30:13: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | int b = blockIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:31:14: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int oc = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:38:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | for (int idx = threadIdx.x; idx < weight_count; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:38:60: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
38 | for (int idx = threadIdx.x; idx < weight_count; idx += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:47:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | for (int o = threadIdx.x; o < output_length; o += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:47:55: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
47 | for (int o = threadIdx.x; o < output_length; o += blockDim.x) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:99:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:100:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:101:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | int input_length = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:102:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
102 | int out_channels = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:103:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | int kernel_size = weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:115:30: warning: performing an implicit widening conversion to type 'unsigned long' of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
115 | size_t shared_mem_size = in_channels * kernel_size * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:115:30: note: make conversion explicit to silence this warning
4 | size_t shared_mem_size = in_channels * kernel_size * sizeof(float);
| ^~~~~~~~~~~~~~~~~~~~~~~~~
| static_cast<unsigned long>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_79/b3_s2_shared_memory_conv_transpose1d/base/base.cu:115:30: note: perform multiplication in a wider type
115 | size_t shared_mem_size = in_channels * kernel_size * sizeof(float);
| ^~~~~~~~~~~
| static_cast<long>( )