← Back to Leaderboard

The AI CUDA Engineer 👷

81_conv_transposed_2D_asymmetric_input_square_kernel___dilated____padded____strided__unrolled_manual_base

Level 1 • Task 81
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
) -> torch.Tensor:
    """
    Performs a 2D transposed convolution operation with asymmetric input and square kernel, supporting dilation, padding, and stride.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height_in, width_in).
        weight (torch.Tensor): Weight tensor of shape (in_channels, out_channels, kernel_size, kernel_size).
        bias (torch.Tensor): Bias tensor of shape (out_channels).
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation rate.

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
    """
    return F.conv_transpose2d(
        x, weight, bias, stride=stride, padding=padding, dilation=dilation
    )


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and square kernel, supporting dilation, padding, and stride.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None
        self.stride = stride
        self.padding = padding
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
height_in = 64
width_in = 128
stride = 5
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height_in, width_in)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and square kernel, supporting dilation, padding, and stride.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the convolution kernel (square, e.g., 3 for a 3x3 kernel).
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height_in, width_in).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
height_in = 64
width_in = 128
stride = 5
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height_in, width_in)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]

Kernel Information

Related Kernels (Level 1, Task 81 • 81_conv_transposed_2D_asymmetric_input_square_kernel___dilated____padded____strided__)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cstdio>
#include <pybind11/pybind11.h>

// This kernel performs the 2D transposed convolution operation with manual loop unrolling via #pragma unroll.
// The inner loops (over kernel height and width) are unrolled to reduce loop overhead and improve performance.

__global__ void conv_transpose2d_forward_kernel_unrolled_manual(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int batch_size,
    int in_channels,
    int out_channels,
    int in_height,
    int in_width,
    int kernel_size,
    int out_height,
    int out_width,
    int stride,
    int padding,
    int dilation) {

  // Decode the linear index into output tensor coordinates (b, o, out_h, out_w)
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int total = batch_size * out_channels * out_height * out_width;
  if (index >= total) return;

  int w_out = index % out_width;
  int temp = index / out_width;
  int h_out = temp % out_height;
  temp /= out_height;
  int o = temp % out_channels;
  int b = temp / out_channels;

  // Start with bias for the output channel
  float result = bias[o];

  // Manually unroll the loops for kernel height and width
  #pragma unroll
  for (int c = 0; c < in_channels; c++) {
    #pragma unroll
    for (int p = 0; p < kernel_size; p++) {
      int h_unscaled = h_out + padding - p * dilation;
      if (h_unscaled % stride != 0) continue;
      int h_in = h_unscaled / stride;
      if (h_in < 0 || h_in >= in_height) continue;
      
      #pragma unroll
      for (int q = 0; q < kernel_size; q++) {
        int w_unscaled = w_out + padding - q * dilation;
        if (w_unscaled % stride != 0) continue;
        int w_in = w_unscaled / stride;
        if (w_in < 0 || w_in >= in_width) continue;
        
        int input_idx = ((b * in_channels + c) * in_height + h_in) * in_width + w_in;
        int weight_idx = ((c * out_channels + o) * kernel_size + p) * kernel_size + q;
        result += input[input_idx] * weight[weight_idx];
      }
    }
  }

  int output_idx = ((b * out_channels + o) * out_height + h_out) * out_width + w_out;
  output[output_idx] = result;
}

// CUDA launcher function
torch::Tensor conv_transpose2d_forward_cuda_unrolled_manual(
    torch::Tensor input,
    torch::Tensor weight,
    torch::Tensor bias,
    int stride,
    int padding,
    int dilation) {
  
  int batch_size = input.size(0);
  int in_channels = input.size(1);
  int in_height = input.size(2);
  int in_width = input.size(3);
  
  int out_channels = weight.size(1);
  int kernel_size = weight.size(2);  // assume square kernel
  
  int out_height = (in_height - 1) * stride - 2 * padding + dilation * (kernel_size - 1) + 1;
  int out_width  = (in_width - 1) * stride - 2 * padding + dilation * (kernel_size - 1) + 1;
  
  auto output = torch::zeros({batch_size, out_channels, out_height, out_width}, input.options());
  
  int total_threads = batch_size * out_channels * out_height * out_width;
  int threads = 1024;
  int blocks = (total_threads + threads - 1) / threads;
  
  conv_transpose2d_forward_kernel_unrolled_manual<<<blocks, threads>>>(
      input.data_ptr<float>(),
      weight.data_ptr<float>(),
      bias.data_ptr<float>(),
      output.data_ptr<float>(),
      batch_size,
      in_channels,
      out_channels,
      in_height,
      in_width,
      kernel_size,
      out_height,
      out_width,
      stride,
      padding,
      dilation);
      
  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess) {
    printf("Error in conv_transpose2d_forward_kernel_unrolled_manual: %s\n", cudaGetErrorString(err));
  }
  
  return output;
}

// Wrapper function to handle bias being potentially None
torch::Tensor conv_transpose2d_forward_wrapper_unrolled_manual(
    torch::Tensor input,
    torch::Tensor weight,
    pybind11::object bias_obj,
    int stride,
    int padding,
    int dilation) {
  
  int out_channels = weight.size(1);
  torch::Tensor bias;
  if (bias_obj.is(pybind11::none())) {
    bias = torch::zeros({out_channels}, weight.options());
  } else {
    bias = bias_obj.cast<torch::Tensor>();
  }
  
  return conv_transpose2d_forward_cuda_unrolled_manual(input, weight, bias, stride, padding, dilation);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward", &conv_transpose2d_forward_wrapper_unrolled_manual,
        "ConvTranspose2d forward with manually unrolled loops (CUDA)",
        pybind11::arg("input"),
        pybind11::arg("weight"),
        pybind11::arg("bias"),
        pybind11::arg("stride"),
        pybind11::arg("padding"),
        pybind11::arg("dilation"));
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.320 inst/cycle 0.000 5
Executed Ipc Elapsed 3.320 inst/cycle 0.000 5
Issue Slots Busy 83.028 % 0.000 5
Issued Ipc Active 3.320 inst/cycle 0.000 5
SM Busy 83.028 % 0.000 5
Memory Throughput 12788813181.688 byte/second 106721887737764.703 5
Mem Busy 5.880 % 0.000 5
Max Bandwidth 5.830 % 0.000 5
L1/TEX Hit Rate 88.752 % 0.000 5
L2 Hit Rate 99.376 % 0.009 5
Mem Pipes Busy 33.080 % 0.000 5
Warp Cycles Per Issued Instruction 15.068 cycle 0.000 5
Warp Cycles Per Executed Instruction 15.070 cycle 0.000 5
Avg. Active Threads Per Warp 27.640 0.000 5
Avg. Not Predicated Off Threads Per Warp 25.310 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 2.000 block 0.000 5
Block Limit Shared Mem 8.000 block 0.000 5
Block Limit Warps 2.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 78.198 % 0.000 5
Achieved Active Warps Per SM 50.048 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (58.6%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (78.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 343357.12 μs
Device Time 1778.30 μs
Self CPU Time 66.07 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 173808.69 μs
Device Time 50030.93 μs
Self CPU Time 632.85 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 1098024.07 μs
Device Time 65243.21 μs
Self CPU Time 1006.46 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 1097018.80 μs
Device Time 65243.21 μs
Self CPU Time 1416.10 μs
Self Device Time 65243.21 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 1096554.78 μs
Device Time 828.51 μs
Self CPU Time 1096554.78 μs
Self Device Time 828.51 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<float>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<float>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 50030.93 μs
Self CPU Time 0.00 μs
Self Device Time 50030.93 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv_transpose2d_forward_kernel_unrolled_manual(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 10245326.93 μs
Self CPU Time 0.00 μs
Self Device Time 10245326.93 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 9311916.68 μs
Device Time 254.66 μs
Self CPU Time 9311916.68 μs
Self Device Time 254.66 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45298 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:12:31: note: the first parameter in the range is 'weight'
12 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:13:31: note: the last parameter in the range is 'bias'
13 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:15:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_unrolled_manual' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
15 | int batch_size,
| ^~~~~~~~~~~~~~~
16 | int in_channels,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:15:9: note: the first parameter in the range is 'batch_size'
15 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:16:9: note: the last parameter in the range is 'in_channels'
16 | int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:17:5: warning: 2 adjacent parameters of 'conv_transpose2d_forward_kernel_unrolled_manual' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
17 | int out_channels,
| ^~~~~~~~~~~~~~~~~
18 | int in_height,
| ~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:17:9: note: the first parameter in the range is 'out_channels'
17 | int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:18:9: note: the last parameter in the range is 'in_height'
18 | int in_height,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:19:5: warning: 3 adjacent parameters of 'conv_transpose2d_forward_kernel_unrolled_manual' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | int in_width,
| ^~~~~~~~~~~~~
20 | int kernel_size,
| ~~~~~~~~~~~~~~~~
21 | int out_height,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:19:9: note: the first parameter in the range is 'in_width'
19 | int in_width,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:21:9: note: the last parameter in the range is 'out_height'
21 | int out_height,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:22:5: warning: 3 adjacent parameters of 'conv_transpose2d_forward_kernel_unrolled_manual' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | int out_width,
| ^~~~~~~~~~~~~~
23 | int stride,
| ~~~~~~~~~~~
24 | int padding,
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:22:9: note: the first parameter in the range is 'out_width'
22 | int out_width,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:24:9: note: the last parameter in the range is 'padding'
24 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:28:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int index = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:72:19: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | torch::Tensor input,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:73:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
73 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:74:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
74 | torch::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:79:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
79 | int batch_size = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:80:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | int in_channels = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:81:19: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | int in_height = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:82:18: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | int in_width = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:84:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
84 | int out_channels = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:85:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
85 | int kernel_size = weight.size(2); // assume square kernel
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:124:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
124 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:125:22: warning: the parameter 'bias_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
125 | pybind11::object bias_obj,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:130:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | int out_channels = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b10_s0_unrolled_manual/base/base.cu:138:56: warning: parameter 'input' is passed by value and only copied once; consider moving it to avoid unnecessary copies [performance-unnecessary-value-param]
5 | return conv_transpose2d_forward_cuda_unrolled_manual(input, weight, bias, stride, padding, dilation);
| ^
| std::move( )