← Back to Leaderboard

The AI CUDA Engineer 👷

81_conv_transposed_2D_asymmetric_input_square_kernel___dilated____padded____strided__coalesced_aligned_base

Level 1 • Task 81
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
    stride: int,
    padding: int,
    dilation: int,
) -> torch.Tensor:
    """
    Performs a 2D transposed convolution operation with asymmetric input and square kernel, supporting dilation, padding, and stride.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height_in, width_in).
        weight (torch.Tensor): Weight tensor of shape (in_channels, out_channels, kernel_size, kernel_size).
        bias (torch.Tensor): Bias tensor of shape (out_channels).
        stride (int): Stride of the convolution.
        padding (int): Padding applied to the input.
        dilation (int): Dilation rate.

    Returns:
        torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
    """
    return F.conv_transpose2d(
        x, weight, bias, stride=stride, padding=padding, dilation=dilation
    )


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and square kernel, supporting dilation, padding, and stride.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int,
        padding: int,
        dilation: int,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )
        self.weight = nn.Parameter(conv.weight.clone())
        self.bias = nn.Parameter(conv.bias.clone()) if bias else None
        self.stride = stride
        self.padding = padding
        self.dilation = dilation

    def forward(self, x: torch.Tensor, fn=module_fn) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.
        """
        return fn(
            x,
            self.weight,
            self.bias,
            self.stride,
            self.padding,
            self.dilation,
        )


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
height_in = 64
width_in = 128
stride = 5
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height_in, width_in)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]
import torch
import torch.nn as nn


class Model(nn.Module):
    """
    Performs a 2D transposed convolution operation with asymmetric input and square kernel, supporting dilation, padding, and stride.

    Args:
        in_channels (int): Number of channels in the input tensor.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int): Size of the convolution kernel (square, e.g., 3 for a 3x3 kernel).
        stride (int, optional): Stride of the convolution. Defaults to 1.
        padding (int, optional): Padding applied to the input. Defaults to 0.
        dilation (int, optional): Spacing between kernel elements. Defaults to 1.
        bias (bool, optional): If `True`, adds a learnable bias to the output. Defaults to `False`.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        bias: bool = False,
    ):
        super(Model, self).__init__()
        self.conv_transpose2d = nn.ConvTranspose2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Performs the 2D transposed convolution.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height_in, width_in).

        Returns:
            torch.Tensor: Output tensor of shape (batch_size, out_channels, height_out, width_out).
        """
        return self.conv_transpose2d(x)


# Constants
batch_size = 16
in_channels = 32
out_channels = 64
kernel_size = 3
height_in = 64
width_in = 128
stride = 5
padding = 1
dilation = 2
bias = False


def get_inputs():
    x = torch.randn(batch_size, in_channels, height_in, width_in)
    return [x]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, dilation, bias]

Kernel Information

Related Kernels (Level 1, Task 81 • 81_conv_transposed_2D_asymmetric_input_square_kernel___dilated____padded____strided__)

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cstdio>
#include <pybind11/pybind11.h>

// Kernel that maps threads to consecutive output elements to ensure coalesced memory accesses
__global__ void conv_transpose2d_forward_kernel_coalesced_aligned(
    const float* __restrict__ input,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int batch_size,
    int in_channels,
    int out_channels,
    int in_height,
    int in_width,
    int kernel_size,
    int out_height,
    int out_width,
    int stride,
    int padding,
    int dilation) {

    // Compute global output coordinates; ensure that threads in a warp produce consecutive output locations
    int out_w = blockIdx.x * blockDim.x + threadIdx.x;  // fastest varying across warps
    int out_h = blockIdx.y * blockDim.y + threadIdx.y;
    int b_o = blockIdx.z; // combined index for batch and output channel

    if (out_w >= out_width || out_h >= out_height) return;

    int o = b_o % out_channels;
    int b = b_o / out_channels;

    // Read bias using aligned load
    float sum = __ldg(&bias[o]);

    // Loop over input channels and kernel spatial dimensions
    #pragma unroll
    for (int c = 0; c < in_channels; ++c) {
        #pragma unroll
        for (int p = 0; p < kernel_size; ++p) {
            int h_unscaled = out_h + padding - p * dilation;
            if (h_unscaled % stride != 0) continue;
            int h_in = h_unscaled / stride;
            if (h_in < 0 || h_in >= in_height) continue;
            
            #pragma unroll
            for (int q = 0; q < kernel_size; ++q) {
                int w_unscaled = out_w + padding - q * dilation;
                if (w_unscaled % stride != 0) continue;
                int w_in = w_unscaled / stride;
                if (w_in < 0 || w_in >= in_width) continue;
                
                int input_idx = ((b * in_channels + c) * in_height + h_in) * in_width + w_in;
                int weight_idx = ((c * out_channels + o) * kernel_size + p) * kernel_size + q;
                
                // Use __ldg to load read-only data in an aligned manner
                sum += __ldg(&input[input_idx]) * __ldg(&weight[weight_idx]);
            }
        }
    }
    
    int output_idx = ((b * out_channels + o) * out_height + out_h) * out_width + out_w;
    output[output_idx] = sum;
}

// CUDA launcher function
torch::Tensor conv_transpose2d_forward_cuda_coalesced_aligned(
    torch::Tensor input,
    torch::Tensor weight,
    torch::Tensor bias,
    int stride,
    int padding,
    int dilation) {

    int batch_size = input.size(0);
    int in_channels = input.size(1);
    int in_height = input.size(2);
    int in_width = input.size(3);

    int out_channels = weight.size(1);
    int kernel_size = weight.size(2);  // assume square kernel

    int out_height = (in_height - 1) * stride - 2 * padding + dilation * (kernel_size - 1) + 1;
    int out_width = (in_width - 1) * stride - 2 * padding + dilation * (kernel_size - 1) + 1;

    auto output = torch::zeros({batch_size, out_channels, out_height, out_width}, input.options());

    // Configure thread block to map consecutive threads to adjacent output elements (ensuring coalesced writes).
    dim3 block(32, 8);
    dim3 grid((out_width + block.x - 1) / block.x,
              (out_height + block.y - 1) / block.y,
              batch_size * out_channels);

    conv_transpose2d_forward_kernel_coalesced_aligned<<<grid, block>>>(
        input.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_channels,
        out_channels,
        in_height,
        in_width,
        kernel_size,
        out_height,
        out_width,
        stride,
        padding,
        dilation);
    
    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        printf("Error in conv_transpose2d_forward_kernel_coalesced_aligned: %s\n", cudaGetErrorString(err));
    }
    
    return output;
}

// Wrapper function to handle optional bias (None case)
torch::Tensor conv_transpose2d_forward_wrapper_coalesced_aligned(
    torch::Tensor input,
    torch::Tensor weight,
    pybind11::object bias_obj,
    int stride,
    int padding,
    int dilation) {

    int out_channels = weight.size(1);
    torch::Tensor bias;
    if (bias_obj.is(pybind11::none())) {
        bias = torch::zeros({out_channels}, weight.options());
    } else {
        bias = bias_obj.cast<torch::Tensor>();
    }

    return conv_transpose2d_forward_cuda_coalesced_aligned(input, weight, bias, stride, padding, dilation);
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &conv_transpose2d_forward_wrapper_coalesced_aligned,
          "ConvTranspose2d forward with coalesced and aligned memory accesses (CUDA)",
          pybind11::arg("input"),
          pybind11::arg("weight"),
          pybind11::arg("bias"),
          pybind11::arg("stride"),
          pybind11::arg("padding"),
          pybind11::arg("dilation"));
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 3.350 inst/cycle 0.000 5
Executed Ipc Elapsed 3.350 inst/cycle 0.000 5
Issue Slots Busy 83.754 % 0.000 5
Issued Ipc Active 3.350 inst/cycle 0.000 5
SM Busy 83.754 % 0.000 5
Memory Throughput 12903644212.230 byte/second 61191209965139.039 5
Mem Busy 5.740 % 0.000 5
Max Bandwidth 5.720 % 0.000 5
L1/TEX Hit Rate 87.118 % 0.000 5
L2 Hit Rate 99.444 % 0.000 5
Mem Pipes Busy 40.228 % 0.000 5
Warp Cycles Per Issued Instruction 15.306 cycle 0.000 5
Warp Cycles Per Executed Instruction 15.306 cycle 0.000 5
Avg. Active Threads Per Warp 27.420 0.000 5
Avg. Not Predicated Off Threads Per Warp 25.000 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 80.158 % 0.002 5
Achieved Active Warps Per SM 51.304 warp 0.001 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (59.2%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (80.2%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 389755.62 μs
Device Time 1663.91 μs
Self CPU Time 58.42 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zeros
CPU Time 16499.74 μs
Device Time 50170.07 μs
Self CPU Time 534.59 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 996335.44 μs
Device Time 65438.10 μs
Self CPU Time 830.42 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 995510.14 μs
Device Time 65438.10 μs
Self CPU Time 1201.74 μs
Self Device Time 65438.10 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 995165.38 μs
Device Time 828.96 μs
Self CPU Time 995165.38 μs
Self Device Time 828.96 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<float>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<float>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 50170.07 μs
Self CPU Time 0.00 μs
Self Device Time 50170.07 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv_transpose2d_forward_kernel_coalesced_aligned(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 10211868.34 μs
Self CPU Time 0.00 μs
Self Device Time 10211868.34 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 9234835.03 μs
Device Time 253.63 μs
Self CPU Time 9234835.03 μs
Self Device Time 253.63 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45299 warnings generated when compiling for host.
Suppressed 45326 warnings (45279 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:10:5 bugprone-easily-swappable-parameters
10 | const float* __restrict__ weight,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:10:31: note: the first parameter in the range is 'weight'
10 | const float* __restrict__ weight,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:11:31: note: the last parameter in the range is 'bias'
11 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:13:5: warning: 3 adjacent parameters of 'conv_transpose2d_forward_kernel_coalesced_aligned' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | int batch_size,
| ^~~~~~~~~~~~~~~
14 | int in_channels,
| ~~~~~~~~~~~~~~~~
15 | int out_channels,
| ~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:13:9: note: the first parameter in the range is 'batch_size'
13 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:15:9: note: the last parameter in the range is 'out_channels'
15 | int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:17:5: warning: 3 adjacent parameters of 'conv_transpose2d_forward_kernel_coalesced_aligned' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
17 | int in_width,
| ^~~~~~~~~~~~~
18 | int kernel_size,
| ~~~~~~~~~~~~~~~~
19 | int out_height,
| ~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:17:9: note: the first parameter in the range is 'in_width'
17 | int in_width,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:19:9: note: the last parameter in the range is 'out_height'
19 | int out_height,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:20:5: warning: 3 adjacent parameters of 'conv_transpose2d_forward_kernel_coalesced_aligned' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
20 | int out_width,
| ^~~~~~~~~~~~~~
21 | int stride,
| ~~~~~~~~~~~
22 | int padding,
| ~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:20:9: note: the first parameter in the range is 'out_width'
20 | int out_width,
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:22:9: note: the last parameter in the range is 'padding'
22 | int padding,
| ^~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:26:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int out_w = blockIdx.x * blockDim.x + threadIdx.x; // fastest varying across warps
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:27:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int out_h = blockIdx.y * blockDim.y + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:28:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int b_o = blockIdx.z; // combined index for batch and output channel
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:70:19: warning: the parameter 'input' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
70 | torch::Tensor input,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:71:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
71 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:72:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
72 | torch::Tensor bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:77:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
77 | int batch_size = input.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:78:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
78 | int in_channels = input.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:79:21: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
79 | int in_height = input.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:80:20: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
80 | int in_width = input.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:82:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | int out_channels = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:83:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | int kernel_size = weight.size(2); // assume square kernel
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:124:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
124 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:125:22: warning: the parameter 'bias_obj' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
125 | pybind11::object bias_obj,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:130:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | int out_channels = weight.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_81/b9_s3_coalesced_aligned/base/base.cu:138:60: warning: parameter 'input' is passed by value and only copied once; consider moving it to avoid unnecessary copies [performance-unnecessary-value-param]
5 | return conv_transpose2d_forward_cuda_coalesced_aligned(input, weight, bias, stride, padding, dilation);
| ^
| std::move( )