import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def module_fn(x: torch.Tensor) -> torch.Tensor:
"""
Implementation of the Gaussian Error Linear Units (GELU) activation function currently in Google BERT repo (identical to OpenAI GPT).
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor.
"""
return (
0.5
* x
* (
1.0
+ torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))
)
)
class Model(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, x, fn=module_fn):
return fn(x)
batch_size = 2000
dim = 2000
def get_inputs():
return [torch.randn(batch_size, dim)]
def get_init_inputs():
return []
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# From https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
class Model(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, x):
return (
0.5
* x
* (
1.0
+ torch.tanh(
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))
)
)
)
batch_size = 2000
dim = 2000
def get_inputs():
return [torch.randn(batch_size, dim)]
def get_init_inputs():
return []
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
// Inline device function for GELU activation computation
__device__ __forceinline__ float compute_gelu(float x) {
const float sqrt_2_over_pi = 0.7978845608f;
const float coeff = 0.044715f;
float x_cubed = x * x * x;
float inner = (x + coeff * x_cubed) * sqrt_2_over_pi;
return 0.5f * x * (1.0f + tanhf(inner));
}
// Optimized kernel with uniform control flow to minimize warp divergence
__global__ void gelu_kernel_uniform(const float* __restrict__ x, float* __restrict__ y, int n) {
extern __shared__ float shared_x[];
const int unroll = 4;
int tid = threadIdx.x;
int base = blockIdx.x * blockDim.x * unroll;
// Check if the current block has a full tile of valid elements
bool full_tile = (base + blockDim.x * unroll <= n);
if (full_tile) {
// All accesses are valid; no branch divergence inside the loop
#pragma unroll
for (int i = 0; i < unroll; i++) {
int idx = base + tid + i * blockDim.x;
shared_x[tid + i * blockDim.x] = x[idx];
}
__syncthreads();
#pragma unroll
for (int i = 0; i < unroll; i++) {
int idx = base + tid + i * blockDim.x;
float xi = shared_x[tid + i * blockDim.x];
y[idx] = compute_gelu(xi);
}
} else {
// For the tail block, use conditional code to guard against out-of-bound accesses
#pragma unroll
for (int i = 0; i < unroll; i++) {
int idx = base + tid + i * blockDim.x;
if (idx < n) {
shared_x[tid + i * blockDim.x] = x[idx];
}
}
__syncthreads();
#pragma unroll
for (int i = 0; i < unroll; i++) {
int idx = base + tid + i * blockDim.x;
if (idx < n) {
float xi = shared_x[tid + i * blockDim.x];
y[idx] = compute_gelu(xi);
}
}
}
}
// Host function to launch the kernel
torch::Tensor gelu_forward(torch::Tensor x) {
TORCH_CHECK(x.is_cuda(), "Input tensor must be on CUDA");
TORCH_CHECK(x.is_contiguous(), "Input tensor must be contiguous");
auto y = torch::empty_like(x);
int n = x.numel();
const int threads = 256;
const int unroll = 4;
int blocks = (n + threads * unroll - 1) / (threads * unroll);
size_t shared_mem_size = threads * unroll * sizeof(float);
gelu_kernel_uniform<<<blocks, threads, shared_mem_size>>>(
x.data_ptr<float>(),
y.data_ptr<float>(),
n
);
return y;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &gelu_forward, "GELU forward CUDA kernel with uniform control flow to minimize warp divergence");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 2.650 | inst/cycle | 0.001 | 5 |
Executed Ipc Elapsed | 2.096 | inst/cycle | 0.001 | 5 |
Issue Slots Busy | 66.448 | % | 0.497 | 5 |
Issued Ipc Active | 2.656 | inst/cycle | 0.001 | 5 |
SM Busy | 66.448 | % | 0.497 | 5 |
Memory Throughput | 1427149930633.488 | byte/second | 61167284831592775680.000 | 5 |
Mem Busy | 35.286 | % | 0.070 | 5 |
Max Bandwidth | 42.654 | % | 0.068 | 5 |
L1/TEX Hit Rate | 0.000 | % | 0.000 | 5 |
L2 Hit Rate | 50.580 | % | 0.027 | 5 |
Mem Pipes Busy | 21.710 | % | 0.048 | 5 |
Warp Cycles Per Issued Instruction | 20.456 | cycle | 0.005 | 5 |
Warp Cycles Per Executed Instruction | 20.524 | cycle | 0.005 | 5 |
Avg. Active Threads Per Warp | 24.500 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 23.940 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 20.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 85.416 | % | 0.061 | 5 |
Achieved Active Warps Per SM | 54.664 | warp | 0.025 | 5 |
Rule | Description |
---|---|
INF HighPipeUtilization | FMA is the highest-utilized pipeline (31.6%) based on active cycles, taking into account the rates of its different instructions. It executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations. It is well-utilized, but should not be a bottleneck. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN ThreadDivergence | Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 24.5 threads being active per cycle. This is further reduced to 23.9 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp(). |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (85.8%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 350868.86 | μs |
Device Time | 2223.79 | μs |
Self CPU Time | 42.31 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 350826.55 | μs |
Device Time | 2223.79 | μs |
Self CPU Time | 116.89 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 373444.70 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 17313.01 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 347733.22 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 347733.22 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 532764.52 | μs |
Device Time | 21038.13 | μs |
Self CPU Time | 532764.52 | μs |
Self Device Time | 21038.13 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
gelu_kernel_uniform(float const*, float*, int) | ||
CPU Time | 0.00 | μs |
Device Time | 103352.34 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 103352.34 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 22618.37 | μs |
Device Time | 40530.16 | μs |
Self CPU Time | 22618.37 | μs |
Self Device Time | 40530.16 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 79964.17 | μs |
Device Time | 600415.60 | μs |
Self CPU Time | 12164.23 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 67801.68 | μs |
Device Time | 600415.60 | μs |
Self CPU Time | 15093.48 | μs |
Self Device Time | 600415.60 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 600415.60 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 600415.60 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45283 warnings generated when compiling for host. Suppressed 45321 warnings (45274 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.