import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def module_fn(x: torch.Tensor) -> torch.Tensor:
"""
Implementation of the Gaussian Error Linear Units (GELU) activation function currently in Google BERT repo (identical to OpenAI GPT).
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor.
"""
return (
0.5
* x
* (
1.0
+ torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))
)
)
class Model(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, x, fn=module_fn):
return fn(x)
batch_size = 2000
dim = 2000
def get_inputs():
return [torch.randn(batch_size, dim)]
def get_init_inputs():
return []
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
# From https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
class Model(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, x):
return (
0.5
* x
* (
1.0
+ torch.tanh(
math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))
)
)
)
batch_size = 2000
dim = 2000
def get_inputs():
return [torch.randn(batch_size, dim)]
def get_init_inputs():
return []
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
// Device function to compute GELU activation for a scalar value
__device__ __forceinline__ float compute_gelu(float x) {
const float sqrt_2_over_pi = 0.7978845608f; // sqrt(2/pi)
const float coeff = 0.044715f;
float x_cubed = x * x * x;
float inner = (x + coeff * x_cubed) * sqrt_2_over_pi;
return 0.5f * x * (1.0f + tanhf(inner));
}
// Device function to compute GELU activation for a float4 vector
__device__ __forceinline__ float4 compute_gelu_vector(const float4 v) {
float4 out;
out.x = compute_gelu(v.x);
out.y = compute_gelu(v.y);
out.z = compute_gelu(v.z);
out.w = compute_gelu(v.w);
return out;
}
// Kernel to process input in vectorized float4 chunks
__global__ void gelu_kernel_vector(const float4* __restrict__ x, float4* __restrict__ y, int vec_size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < vec_size) {
// Load data using read-only cache
float4 input = __ldg(&x[idx]);
// Apply the modular GELU operation
float4 output = compute_gelu_vector(input);
y[idx] = output;
}
}
// Fallback scalar kernel for remaining elements
__global__ void gelu_kernel_scalar(const float* __restrict__ x, float* __restrict__ y, int n) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
y[idx] = compute_gelu(x[idx]);
}
}
// Forward function exposed to Python
torch::Tensor gelu_forward(torch::Tensor x) {
TORCH_CHECK(x.is_cuda(), "Input tensor must be on CUDA");
TORCH_CHECK(x.is_contiguous(), "Input tensor must be contiguous");
auto y = torch::empty_like(x);
int n = x.numel();
// Process the bulk of data using vectorized operations
int vec_size = n / 4; // number of float4 vectors
int remainder = n % 4;
const int threads = 256;
if (vec_size > 0) {
int blocks = (vec_size + threads - 1) / threads;
const float4* x_vec = reinterpret_cast<const float4*>(x.data_ptr<float>());
float4* y_vec = reinterpret_cast<float4*>(y.data_ptr<float>());
gelu_kernel_vector<<<blocks, threads>>>(x_vec, y_vec, vec_size);
}
// Process any remaining elements with the scalar kernel
if (remainder > 0) {
int offset = vec_size * 4;
int blocks = (remainder + threads - 1) / threads;
gelu_kernel_scalar<<<blocks, threads>>>(x.data_ptr<float>() + offset, y.data_ptr<float>() + offset, remainder);
}
return y;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &gelu_forward, "Modular GELU CUDA implementation");
}
Metric | Value | Unit | Variance | Samples |
---|
Rule | Description |
---|
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 757421.37 | μs |
Device Time | 1702.42 | μs |
Self CPU Time | 35.24 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 757386.13 | μs |
Device Time | 1702.42 | μs |
Self CPU Time | 84.83 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 771236.03 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 15410.31 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 743875.29 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 743875.29 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 471341.29 | μs |
Device Time | 19074.59 | μs |
Self CPU Time | 471341.29 | μs |
Self Device Time | 19074.59 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
gelu_kernel_vector(float4 const*, float4*, int) | ||
CPU Time | 0.00 | μs |
Device Time | 95280.43 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 95280.43 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 15521.00 | μs |
Device Time | 36806.85 | μs |
Self CPU Time | 15521.00 | μs |
Self Device Time | 36806.85 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 75629.24 | μs |
Device Time | 545925.29 | μs |
Self CPU Time | 11954.77 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 63675.96 | μs |
Device Time | 545925.29 | μs |
Self CPU Time | 15381.36 | μs |
Self Device Time | 545925.29 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 545925.29 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 545925.29 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45278 warnings generated when compiling for host. Suppressed 45321 warnings (45274 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.