← Back to Leaderboard

The AI CUDA Engineer 👷

9_Tall_skinny_matrix_multiplication_multi_tile_mapping_base

Level 1 • Task 9
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(A, B):
    """
    Performs a single matrix multiplication (C = A * B) where one of the matrices is tall and skinny (M >> N or N >> M).

    Args:
        A (torch.Tensor): Input matrix of shape (M, K) or (K, M) where M >> N or N >> M.
        B (torch.Tensor): Input matrix of shape (K, N) or (N, K) where M >> N or N >> M.

    Returns:
        torch.Tensor: Output matrix of shape (M, N) or (N, M)
    """
    return torch.matmul(A, B)


class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) where one of the matrices is tall and skinny (M >> N or N >> M)
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, A, B, fn=module_fn):
        return fn(A, B)


M = 16384
N = 16


def get_inputs():
    A = torch.randn(M, N)
    B = torch.randn(N, M)
    return [A, B]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) where one of the matrices is tall and skinny (M >> N or N >> M)
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, A, B):
        """
        Performs the matrix multiplication.

        Args:
            A (torch.Tensor): Input matrix of shape (M, K) or (K, M) where M >> N or N >> M.
            B (torch.Tensor): Input matrix of shape (K, N) or (N, K) where M >> N or N >> M.

        Returns:
            torch.Tensor: Output matrix of shape (M, N) or (N, M)
        """
        return torch.matmul(A, B)

M = 16384
N = 16

def get_inputs():
    A = torch.randn(M, N)
    B = torch.randn(N, M)
    return [A, B]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 9 • 9_Tall_skinny_matrix_multiplication_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_loop_matmul_base 0.68 0.78 0.59
🥈 constant_mem_matmul_base_base 0.69 0.78 0.58
🥉 unrolled_matmul_kernel_base 0.69 0.77 0.58
4 balanced_workload_matmul_base_base 0.71 0.75 0.56
4 multi_tile_mapping_base 0.71 0.75 0.56
6 optimized_tiled_gemm_base 0.71 0.75 0.56
6 optimized_matmul_kernel_base 0.71 0.75 0.56
8 streamed_balanced_matmul_base 0.75 0.71 0.53
9 streamed_balanced_matmul_base 0.75 0.71 0.53
9 streamed_pipelined_matmul_base 0.75 0.71 0.53
11 predicated_tile_loading_unrolled_edit_1 1.26 0.42 0.32
11 unrolled_loop_optimization_base 1.26 0.42 0.32
11 unrolled_loop_optimization_edit_1 1.26 0.42 0.32
11 modular_device_functions_edit_1 1.26 0.42 0.32
15 uniform_flow_matmul_base 1.26 0.42 0.32
15 warp_optimized_reduction_edit_1 1.26 0.42 0.32
17 predicated_tile_loading_unrolled_base 1.26 0.42 0.32
18 modular_device_functions_base 1.26 0.42 0.32
19 warp_divergence_optimized_base_base 1.27 0.42 0.32
20 coalesced_memory_access_base_base 1.27 0.42 0.32
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16
#define TILE_FACTOR 2
#define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)  // Each block computes a TILE_DIM x TILE_DIM output tile

// Helper to fetch matrix elements considering transpose
__device__ inline float get_element(const float* __restrict__ matrix, int row, int col, int ld, bool transpose) {
    return transpose ? matrix[col * ld + row] : matrix[row * ld + col];
}

// Kernel: each thread computes a 2x2 block of output, reducing the total thread count and aligning work
__global__ void matmul_kernel_multitile(const float* __restrict__ A,
                                         const float* __restrict__ B,
                                         float* __restrict__ C,
                                         int M, int N, int K,
                                         int lda, int ldb, int ldc,
                                         bool transA, bool transB) {
    // Determine the starting row and column for the block
    int blockRow = blockIdx.y * TILE_DIM;
    int blockCol = blockIdx.x * TILE_DIM;

    // Each thread computes a 2x2 tile within the block
    int threadRow = threadIdx.y;
    int threadCol = threadIdx.x;
    int row0 = blockRow + threadRow * TILE_FACTOR;  // starting row for this thread's tile
    int col0 = blockCol + threadCol * TILE_FACTOR;  // starting col for this thread's tile

    // Accumulators for a 2x2 output computed in registers
    float acc[2][2] = { {0.0f, 0.0f}, {0.0f, 0.0f} };

    // Shared memory tiles
    __shared__ float As[TILE_DIM][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][TILE_DIM];

    // Loop over tiles on the K dimension
    for (int t = 0; t < (K + BLOCK_SIZE - 1) / BLOCK_SIZE; ++t) {
        int tiledK = t * BLOCK_SIZE;
        
        // Load a tile of matrix A into shared memory
        // Each thread loads TILE_FACTOR elements from A
        for (int i = 0; i < TILE_FACTOR; ++i) {
            int globalRow = row0 + i;
            int globalCol = tiledK + threadIdx.x;
            if (globalRow < M && globalCol < K)
                As[threadIdx.y * TILE_FACTOR + i][threadIdx.x] = get_element(A, globalRow, globalCol, lda, transA);
            else
                As[threadIdx.y * TILE_FACTOR + i][threadIdx.x] = 0.0f;
        }

        // Load a tile of matrix B into shared memory
        // Each thread loads TILE_FACTOR elements from B
        for (int i = 0; i < TILE_FACTOR; ++i) {
            int globalRow = tiledK + threadIdx.y;
            int globalCol = col0 + i;
            if (globalRow < K && globalCol < N)
                Bs[threadIdx.y][threadIdx.x * TILE_FACTOR + i] = get_element(B, globalRow, globalCol, ldb, transB);
            else
                Bs[threadIdx.y][threadIdx.x * TILE_FACTOR + i] = 0.0f;
        }
        
        __syncthreads();
        
        // Multiply the loaded tiles
        for (int k = 0; k < BLOCK_SIZE; ++k) {
            float a0 = As[threadIdx.y * TILE_FACTOR + 0][k];
            float a1 = As[threadIdx.y * TILE_FACTOR + 1][k];
            float b0 = Bs[k][threadIdx.x * TILE_FACTOR + 0];
            float b1 = Bs[k][threadIdx.x * TILE_FACTOR + 1];
            acc[0][0] += a0 * b0;
            acc[0][1] += a0 * b1;
            acc[1][0] += a1 * b0;
            acc[1][1] += a1 * b1;
        }
        
        __syncthreads();
    }

    // Write back the computed 2x2 tile to global memory
    for (int i = 0; i < TILE_FACTOR; ++i) {
        for (int j = 0; j < TILE_FACTOR; ++j) {
            int globalRow = row0 + i;
            int globalCol = col0 + j;
            if (globalRow < M && globalCol < N)
                C[globalRow * ldc + globalCol] = acc[i][j];
        }
    }
}


torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B) {
    if (!A.is_cuda() || !B.is_cuda()) {
        throw std::invalid_argument("Input tensors must be on CUDA devices");
    }
    if (A.dim() != 2 || B.dim() != 2) {
        throw std::invalid_argument("Input tensors must be 2D matrices");
    }

    int64_t A_rows = A.size(0);
    int64_t A_cols = A.size(1);
    int64_t B_rows = B.size(0);
    int64_t B_cols = B.size(1);

    bool transA = false;
    bool transB = false;
    int64_t M, N, K;
    int lda, ldb, ldc;

    if (A_rows >= A_cols && B_rows == A_cols) {
        // A is M x K, B is K x N
        M = A_rows;
        K = A_cols;
        N = B_cols;
        lda = A.stride(0);
        ldb = B.stride(0);
    } else if (A_cols > A_rows && B_rows == A_rows) {
        // A is transposed: K x M, so treat it as M x K with transA=true
        transA = true;
        M = A_cols;
        K = A_rows;
        N = B_cols;
        lda = A.stride(1);
        ldb = B.stride(0);
    } else if (A_rows >= A_cols && B_cols == A_cols) {
        // B is transposed: N x K, so treat it as K x N with transB=true
        transB = true;
        M = A_rows;
        K = A_cols;
        N = B_rows;
        lda = A.stride(0);
        ldb = B.stride(1);
    } else if (A_cols > A_rows && B_cols == A_rows) {
        // Both A and B are transposed
        transA = true;
        transB = true;
        M = A_cols;
        K = A_rows;
        N = B_rows;
        lda = A.stride(1);
        ldb = B.stride(1);
    } else {
        throw std::invalid_argument("Incompatible matrix dimensions for multiplication");
    }

    ldc = N;
    auto C = torch::empty({M, N}, A.options());

    dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE);
    dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);

    matmul_kernel_multitile<<<gridDim, blockDim>>>(
        A.data_ptr<float>(),
        B.data_ptr<float>(),
        C.data_ptr<float>(),
        M, N, K,
        lda, ldb, ldc,
        transA, transB);
    cudaDeviceSynchronize();
    return C;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &matmul_cuda, "Matrix multiplication with optimized thread/block indexing (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.740 inst/cycle 0.000 5
Executed Ipc Elapsed 2.730 inst/cycle 0.000 5
Issue Slots Busy 68.562 % 0.001 5
Issued Ipc Active 2.740 inst/cycle 0.000 5
SM Busy 68.562 % 0.001 5
Memory Throughput 1290273961637.944 byte/second 454540160070862400.000 5
Mem Busy 97.278 % 0.000 5
Max Bandwidth 66.236 % 0.000 5
L1/TEX Hit Rate 49.620 % 0.000 5
L2 Hit Rate 99.318 % 0.003 5
Mem Pipes Busy 46.584 % 0.000 5
Warp Cycles Per Issued Instruction 16.258 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.258 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.570 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 70.032 % 0.000 5
Achieved Active Warps Per SM 44.820 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (35.0%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 406699.58 μs
Device Time 80.77 μs
Self CPU Time 45.14 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 406654.44 μs
Device Time 80.77 μs
Self CPU Time 106.55 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 406100.21 μs
Device Time 0.00 μs
Self CPU Time 129.29 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 405779.99 μs
Device Time 0.00 μs
Self CPU Time 405779.99 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
matmul_kernel_multitile(float const*, float const*, float*, int, int, int, int, int, int, bool, bool)
CPU Time 0.00 μs
Device Time 3094679.54 μs
Self CPU Time 0.00 μs
Self Device Time 3094679.54 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 3399460.87 μs
Device Time 470.97 μs
Self CPU Time 3399460.87 μs
Self Device Time 470.97 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 12989.66 μs
Device Time 65645.60 μs
Self CPU Time 12989.66 μs
Self Device Time 65645.60 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 44856.62 μs
Device Time 346677.24 μs
Self CPU Time 8333.07 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 36532.14 μs
Device Time 346677.24 μs
Self CPU Time 11235.68 μs
Self Device Time 346677.24 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 346677.24 μs
Self CPU Time 0.00 μs
Self Device Time 346677.24 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45300 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:18:56 bugprone-easily-swappable-parameters
18 | int M, int N, int K,
| ^~~~~~
19 | int lda, int ldb, int ldc,
| ~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:18:60: note: the first parameter in the range is 'K'
18 | int M, int N, int K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:19:46: note: the last parameter in the range is 'lda'
19 | int lda, int ldb, int ldc,
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:22:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int blockRow = blockIdx.y * TILE_DIM;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:23:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int blockCol = blockIdx.x * TILE_DIM;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:26:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int threadRow = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:27:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int threadCol = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:46:29: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
46 | int globalCol = tiledK + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:56:29: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
56 | int globalRow = tiledK + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:93:41: warning: the parameter 'A' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
93 | torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:93:58: warning: the parameter 'B' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
93 | torch::Tensor matmul_cuda(torch::Tensor A, torch::Tensor B) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:116:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
116 | lda = A.stride(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:117:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
117 | ldb = B.stride(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:124:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
124 | lda = A.stride(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:125:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
125 | ldb = B.stride(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:132:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
132 | lda = A.stride(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:133:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | ldb = B.stride(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:141:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
141 | lda = A.stride(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:142:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
142 | ldb = B.stride(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:147:11: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
147 | ldc = N;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:23: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:23: note: make conversion explicit to silence this warning
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:23: note: perform multiplication in a wider type
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:39: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:39: note: make conversion explicit to silence this warning
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:39: note: perform multiplication in a wider type
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:54: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:54: note: make conversion explicit to silence this warning
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:54: note: perform multiplication in a wider type
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:70: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:70: note: make conversion explicit to silence this warning
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:151:70: note: perform multiplication in a wider type
151 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:7:19: note: expanded from macro 'TILE_DIM'
7 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR) // Each block computes a TILE_DIM x TILE_DIM output tile
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:157:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
157 | M, N, K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:157:12: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
157 | M, N, K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b7_s2_multi_tile_mapping/base/base.cu:157:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
157 | M, N, K,
| ^