← Back to Leaderboard

The AI CUDA Engineer 👷

9_Tall_skinny_matrix_multiplication_optimized_tiled_gemm_base

Level 1 • Task 9
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(A, B):
    """
    Performs a single matrix multiplication (C = A * B) where one of the matrices is tall and skinny (M >> N or N >> M).

    Args:
        A (torch.Tensor): Input matrix of shape (M, K) or (K, M) where M >> N or N >> M.
        B (torch.Tensor): Input matrix of shape (K, N) or (N, K) where M >> N or N >> M.

    Returns:
        torch.Tensor: Output matrix of shape (M, N) or (N, M)
    """
    return torch.matmul(A, B)


class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) where one of the matrices is tall and skinny (M >> N or N >> M)
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, A, B, fn=module_fn):
        return fn(A, B)


M = 16384
N = 16


def get_inputs():
    A = torch.randn(M, N)
    B = torch.randn(N, M)
    return [A, B]


def get_init_inputs():
    return []  # No special initialization inputs needed
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a single matrix multiplication (C = A * B) where one of the matrices is tall and skinny (M >> N or N >> M)
    """
    def __init__(self):
        super(Model, self).__init__()
    
    def forward(self, A, B):
        """
        Performs the matrix multiplication.

        Args:
            A (torch.Tensor): Input matrix of shape (M, K) or (K, M) where M >> N or N >> M.
            B (torch.Tensor): Input matrix of shape (K, N) or (N, K) where M >> N or N >> M.

        Returns:
            torch.Tensor: Output matrix of shape (M, N) or (N, M)
        """
        return torch.matmul(A, B)

M = 16384
N = 16

def get_inputs():
    A = torch.randn(M, N)
    B = torch.randn(N, M)
    return [A, B]

def get_init_inputs():
    return []  # No special initialization inputs needed

Kernel Information

Related Kernels (Level 1, Task 9 • 9_Tall_skinny_matrix_multiplication_)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 unrolled_loop_matmul_base 0.68 0.78 0.59
🥈 constant_mem_matmul_base_base 0.69 0.78 0.58
🥉 unrolled_matmul_kernel_base 0.69 0.77 0.58
4 balanced_workload_matmul_base_base 0.71 0.75 0.56
4 multi_tile_mapping_base 0.71 0.75 0.56
6 optimized_tiled_gemm_base 0.71 0.75 0.56
6 optimized_matmul_kernel_base 0.71 0.75 0.56
8 streamed_balanced_matmul_base 0.75 0.71 0.53
9 streamed_balanced_matmul_base 0.75 0.71 0.53
9 streamed_pipelined_matmul_base 0.75 0.71 0.53
11 predicated_tile_loading_unrolled_edit_1 1.26 0.42 0.32
11 unrolled_loop_optimization_base 1.26 0.42 0.32
11 unrolled_loop_optimization_edit_1 1.26 0.42 0.32
11 modular_device_functions_edit_1 1.26 0.42 0.32
15 uniform_flow_matmul_base 1.26 0.42 0.32
15 warp_optimized_reduction_edit_1 1.26 0.42 0.32
17 predicated_tile_loading_unrolled_base 1.26 0.42 0.32
18 modular_device_functions_base 1.26 0.42 0.32
19 warp_divergence_optimized_base_base 1.27 0.42 0.32
20 coalesced_memory_access_base_base 1.27 0.42 0.32
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define BLOCK_SIZE 16
#define ELEMENTS_PER_THREAD 4
#define TILE_FACTOR 2
#define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)

// Helper to fetch matrix elements considering transpose
__device__ inline float get_element(const float* __restrict__ matrix, int row, int col, int ld, bool transpose) {
    return transpose ? matrix[col * ld + row] : matrix[row * ld + col];
}

__global__ void optimized_tiled_gemm(const float* __restrict__ A,
                                      const float* __restrict__ B,
                                      float* __restrict__ C,
                                      int M, int N, int K,
                                      int lda, int ldb, int ldc,
                                      bool transA, bool transB) {
    // Determine the starting row and column for the block
    int blockRow = blockIdx.y * TILE_DIM;
    int blockCol = blockIdx.x * TILE_DIM;

    int threadRow = threadIdx.y;
    int threadCol = threadIdx.x;
    int row0 = blockRow + threadRow * TILE_FACTOR;
    int col0 = blockCol + threadCol * TILE_FACTOR;

    float acc[TILE_FACTOR][TILE_FACTOR] = { {0.0f, 0.0f}, {0.0f, 0.0f} };

    __shared__ float As[TILE_DIM][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][TILE_DIM];

    for (int t = 0; t < (K + BLOCK_SIZE - 1) / BLOCK_SIZE; ++t) {
        int tiledK = t * BLOCK_SIZE;

        // Load a tile of matrix A into shared memory
        for (int i = 0; i < TILE_FACTOR; ++i) {
            int globalRow = row0 + i;
            int globalCol = tiledK + threadIdx.x;
            if (globalRow < M && globalCol < K)
                As[threadIdx.y * TILE_FACTOR + i][threadIdx.x] = get_element(A, globalRow, globalCol, lda, transA);
            else
                As[threadIdx.y * TILE_FACTOR + i][threadIdx.x] = 0.0f;
        }

        // Load a tile of matrix B into shared memory
        for (int i = 0; i < TILE_FACTOR; ++i) {
            int globalRow = tiledK + threadIdx.y;
            int globalCol = col0 + i;
            if (globalRow < K && globalCol < N)
                Bs[threadIdx.y][threadIdx.x * TILE_FACTOR + i] = get_element(B, globalRow, globalCol, ldb, transB);
            else
                Bs[threadIdx.y][threadIdx.x * TILE_FACTOR + i] = 0.0f;
        }

        __syncthreads();

        // Multiply the loaded tiles
        for (int k = 0; k < BLOCK_SIZE; ++k) {
            float a0 = As[threadIdx.y * TILE_FACTOR + 0][k];
            float a1 = As[threadIdx.y * TILE_FACTOR + 1][k];
            float b0 = Bs[k][threadIdx.x * TILE_FACTOR + 0];
            float b1 = Bs[k][threadIdx.x * TILE_FACTOR + 1];
            acc[0][0] += a0 * b0;
            acc[0][1] += a0 * b1;
            acc[1][0] += a1 * b0;
            acc[1][1] += a1 * b1;
        }

        __syncthreads();
    }

    for (int i = 0; i < TILE_FACTOR; ++i) {
        for (int j = 0; j < TILE_FACTOR; ++j) {
            int globalRow = row0 + i;
            int globalCol = col0 + j;
            if (globalRow < M && globalCol < N)
                C[globalRow * ldc + globalCol] = acc[i][j];
        }
    }
}

torch::Tensor matmul_cuda_optimized(torch::Tensor A, torch::Tensor B) {
    if (!A.is_cuda() || !B.is_cuda()) {
        throw std::invalid_argument("Input tensors must be on CUDA devices");
    }
    if (A.dim() != 2 || B.dim() != 2) {
        throw std::invalid_argument("Input tensors must be 2D matrices");
    }

    int64_t M = A.size(0);
    int64_t K = A.size(1);
    int64_t N = B.size(1);

    bool transA = false;
    bool transB = false;
    int lda = A.stride(0), ldb = B.stride(0), ldc = N;

    auto C = torch::empty({M, N}, A.options());

    dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE);
    dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);

    optimized_tiled_gemm<<<gridDim, blockDim>>>(
        A.data_ptr<float>(),
        B.data_ptr<float>(),
        C.data_ptr<float>(),
        M, N, K,
        lda, ldb, ldc,
        transA, transB);
    cudaDeviceSynchronize();
    return C;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &matmul_cuda_optimized, "Optimized matrix multiplication combining multiple techniques (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.740 inst/cycle 0.000 5
Executed Ipc Elapsed 2.730 inst/cycle 0.000 5
Issue Slots Busy 68.534 % 0.001 5
Issued Ipc Active 2.740 inst/cycle 0.000 5
SM Busy 68.534 % 0.001 5
Memory Throughput 1290470026822.698 byte/second 95548564925960736.000 5
Mem Busy 97.206 % 0.001 5
Max Bandwidth 66.200 % 0.000 5
L1/TEX Hit Rate 49.644 % 0.000 5
L2 Hit Rate 99.460 % 0.002 5
Mem Pipes Busy 46.560 % 0.000 5
Warp Cycles Per Issued Instruction 16.262 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.264 cycle 0.000 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.570 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 12.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 70.024 % 0.000 5
Achieved Active Warps Per SM 44.816 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (35.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 416543.78 μs
Device Time 79.90 μs
Self CPU Time 36.93 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 416506.85 μs
Device Time 79.90 μs
Self CPU Time 100.82 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 415921.30 μs
Device Time 0.00 μs
Self CPU Time 89.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 414148.12 μs
Device Time 0.00 μs
Self CPU Time 414148.12 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 3376795.52 μs
Device Time 392.54 μs
Self CPU Time 3376795.52 μs
Self Device Time 392.54 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
optimized_tiled_gemm(float const*, float const*, float*, int, int, int, int, int, int, bool, bool)
CPU Time 0.00 μs
Device Time 3078052.36 μs
Self CPU Time 0.00 μs
Self Device Time 3078052.36 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 12723.07 μs
Device Time 64917.64 μs
Self CPU Time 12723.07 μs
Self Device Time 64917.64 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 45619.81 μs
Device Time 342855.22 μs
Self CPU Time 8910.57 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 36713.41 μs
Device Time 342855.22 μs
Self CPU Time 11533.90 μs
Self Device Time 342855.22 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 342855.22 μs
Self CPU Time 0.00 μs
Self Device Time 342855.22 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45294 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:18:53 bugprone-easily-swappable-parameters
18 | int M, int N, int K,
| ^~~~~~
19 | int lda, int ldb, int ldc,
| ~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:18:57: note: the first parameter in the range is 'K'
18 | int M, int N, int K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:19:43: note: the last parameter in the range is 'lda'
19 | int lda, int ldb, int ldc,
| ^~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:22:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
22 | int blockRow = blockIdx.y * TILE_DIM;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:23:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | int blockCol = blockIdx.x * TILE_DIM;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:25:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
25 | int threadRow = threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:26:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | int threadCol = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:41:29: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
41 | int globalCol = tiledK + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:50:29: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
50 | int globalRow = tiledK + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:85:51: warning: the parameter 'A' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
85 | torch::Tensor matmul_cuda_optimized(torch::Tensor A, torch::Tensor B) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:85:68: warning: the parameter 'B' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
85 | torch::Tensor matmul_cuda_optimized(torch::Tensor A, torch::Tensor B) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:99:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int lda = A.stride(0), ldb = B.stride(0), ldc = N;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:99:34: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int lda = A.stride(0), ldb = B.stride(0), ldc = N;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:99:53: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | int lda = A.stride(0), ldb = B.stride(0), ldc = N;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:23: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:23: note: make conversion explicit to silence this warning
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:23: note: perform multiplication in a wider type
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:39: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:39: note: make conversion explicit to silence this warning
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:39: note: perform multiplication in a wider type
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:54: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:54: note: make conversion explicit to silence this warning
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:54: note: perform multiplication in a wider type
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:70: warning: performing an implicit widening conversion to type 'int64_t' (aka 'long') of a multiplication performed in type 'int' [bugprone-implicit-widening-of-multiplication-result]
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:70: note: make conversion explicit to silence this warning
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:104:70: note: perform multiplication in a wider type
104 | dim3 gridDim((N + TILE_DIM - 1) / TILE_DIM, (M + TILE_DIM - 1) / TILE_DIM);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:8:19: note: expanded from macro 'TILE_DIM'
8 | #define TILE_DIM (BLOCK_SIZE * TILE_FACTOR)
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:5:20: note: expanded from macro 'BLOCK_SIZE'
5 | #define BLOCK_SIZE 16
| ^~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:110:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | M, N, K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:110:12: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | M, N, K,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_9/b8_s3_optimized_tiled_gemm/base/base.cu:110:15: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
110 | M, N, K,
| ^