← Back to Leaderboard

The AI CUDA Engineer 👷

94_MSELossmse_warp_reduction_base

Level 1 • Task 94
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
    """
    Computes the Mean Squared Error loss for regression tasks.

    Args:
        predictions (torch.Tensor): Predicted values.
        targets (torch.Tensor): Target values.

    Returns:
        torch.Tensor: Mean Squared Error loss.
    """
    return F.mse_loss(predictions, targets, reduction="mean")


class Model(nn.Module):
    """
    A model that computes the Mean Squared Error loss for regression tasks.

    Parameters:
        None
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets, fn=module_fn):
        return fn(predictions, targets)


batch_size = 128
input_shape = (4096,)
dim = 1


def get_inputs():
    return [
        torch.randn(batch_size, *input_shape),
        torch.randn(batch_size, *input_shape),
    ]


def get_init_inputs():
    return []
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that computes the Mean Squared Error loss for regression tasks.

    Parameters:
        None
    """
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets):
        return torch.mean((predictions - targets) ** 2)

batch_size = 128
input_shape = (4096, )
dim = 1

def get_inputs():
    return [torch.randn(batch_size, *input_shape), torch.randn(batch_size, *input_shape)]

def get_init_inputs():
    return []

Kernel Information

Related Kernels (Level 1, Task 94 • 94_MSELoss)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 optimized_thread_indexing_base 0.02 1.03 2.04
🥇 coalesced_shfl_mse_base 0.02 1.03 2.04
🥇 efficient_mse_base 0.02 1.03 2.04
🥇 mse_unrolled_optimized_base 0.02 1.03 2.04
🥇 mse_min_sync_edit_1 0.02 1.03 2.04
🥇 vectorized_ldg_mse_base 0.02 1.03 2.04
🥇 optimized_grid_stride_warp_reduce_base 0.02 1.03 2.04
🥇 mse_1d_optimized_indexing_base 0.02 1.03 2.04
🥇 mse_unrolled_optimized_edit_1 0.02 1.03 2.04
🥇 mse_warp_reduction_base 0.02 1.03 2.04
🥇 mse_unroll_pragma_base_base 0.02 1.03 2.04
🥇 mse_blocksize_experiment_base 0.02 1.03 2.04
🥇 mse_ldg_vectorized_edit_edit_1 0.02 1.03 2.04
🥇 mse_ldg_vectorized_edit_base 0.02 1.03 2.04
15 optimized_block_size_mse_base 0.02 0.97 1.92
15 stride_mse_loss_base 0.02 0.97 1.92
15 warp_uniform_mse_base 0.02 0.97 1.92
15 block_size_experimentation_base_base 0.02 0.97 1.92
15 optimized_mse_forward_base 0.02 0.97 1.92
15 warp_aligned_mse_base_base 0.02 0.97 1.92
#include <pybind11/pybind11.h>
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>

// Define block size and warp size
static const int BLOCK_SIZE = 256;
#define WARP_SIZE 32

// CUDA kernel using warp-level reduction to minimize __syncthreads() usage
template <typename scalar_t>
__global__ void mse_forward_kernel_warp_reduction(
    const scalar_t* __restrict__ preds,
    const scalar_t* __restrict__ tgts,
    double* __restrict__ sum_out,
    const int64_t num_elements
) {
    double local_sum = 0.0;
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = gridDim.x * blockDim.x;
    
    // Grid-stride loop to accumulate squared differences
    for (; idx < num_elements; idx += stride) {
        double diff = static_cast<double>(preds[idx]) - static_cast<double>(tgts[idx]);
        local_sum += diff * diff;
    }

    // Warp-level reduction using shuffle intrinsics
    unsigned mask = 0xffffffff;
    for (int offset = WARP_SIZE / 2; offset > 0; offset >>= 1) {
        local_sum += __shfl_down_sync(mask, local_sum, offset);
    }

    // Each warp writes its reduced result to shared memory
    __shared__ double warp_sums[BLOCK_SIZE / WARP_SIZE];
    int lane = threadIdx.x % WARP_SIZE;
    int warpId = threadIdx.x / WARP_SIZE;
    if (lane == 0) {
        warp_sums[warpId] = local_sum;
    }

    // Synchronize once to ensure all warp results are written
    __syncthreads();

    // First thread accumulates results from all warps in the block
    if (threadIdx.x == 0) {
        double block_sum = 0.0;
        int numWarps = blockDim.x / WARP_SIZE;
        for (int i = 0; i < numWarps; i++) {
            block_sum += warp_sums[i];
        }
        atomicAdd(sum_out, block_sum);
    }
}

// Host function that sets up the kernel launch
torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
    TORCH_CHECK(predictions.is_cuda(), "predictions must be a CUDA tensor");
    TORCH_CHECK(targets.is_cuda(), "targets must be a CUDA tensor");
    TORCH_CHECK(predictions.numel() == targets.numel(),
                "predictions and targets must have the same number of elements");

    const int64_t num_elements = predictions.numel();

    // Get SM count and set grid size (using 4 blocks per SM)
    int device_id;
    cudaGetDevice(&device_id);
    int sm_count;
    cudaDeviceGetAttribute(&sm_count, cudaDevAttrMultiProcessorCount, device_id);
    int grid_size = sm_count * 4;

    auto accumulator = torch::zeros({1}, predictions.options().dtype(at::kDouble));

    AT_DISPATCH_FLOATING_TYPES(predictions.scalar_type(), "mse_forward_cuda_warp", ([&]() {
        mse_forward_kernel_warp_reduction<scalar_t><<<grid_size, BLOCK_SIZE>>>(
            predictions.data_ptr<scalar_t>(),
            targets.data_ptr<scalar_t>(),
            accumulator.data_ptr<double>(),
            num_elements
        );
    }));

    // Final result: mean squared error
    auto result = accumulator.div(static_cast<double>(num_elements));
    return result.to(predictions.dtype());
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Mean Squared Error (MSE) forward using warp-level reduction (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.836 inst/cycle 0.000 5
Executed Ipc Elapsed 0.474 inst/cycle 0.000 5
Issue Slots Busy 22.114 % 0.010 5
Issued Ipc Active 0.884 inst/cycle 0.000 5
SM Busy 22.114 % 0.010 5
Memory Throughput 764068404880.190 byte/second 182694527171556081664.000 5
Mem Busy 13.170 % 0.041 5
Max Bandwidth 22.926 % 0.126 5
L1/TEX Hit Rate 0.000 % 0.000 5
L2 Hit Rate 18.756 % 0.002 5
Mem Pipes Busy 7.538 % 0.014 5
Warp Cycles Per Issued Instruction 31.422 cycle 0.039 5
Warp Cycles Per Executed Instruction 33.220 cycle 0.031 5
Avg. Active Threads Per Warp 30.670 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.470 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 10.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 43.508 % 0.016 5
Achieved Active Warps Per SM 27.846 warp 0.007 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (43.6%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 1402214.79 μs
Device Time 243791.90 μs
Self CPU Time 55090.79 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 1347124.00 μs
Device Time 243791.90 μs
Self CPU Time 193506.77 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 4033999.47 μs
Device Time 6719481.68 μs
Self CPU Time 258180.45 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 3775821.14 μs
Device Time 6719481.68 μs
Self CPU Time 346240.50 μs
Self Device Time 6719481.68 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 4434872.85 μs
Device Time 23014.12 μs
Self CPU Time 4434872.85 μs
Self Device Time 23014.12 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void mse_forward_kernel_warp_reduction<float>(float const*, float const*, double*, long)
CPU Time 0.00 μs
Device Time 444021.36 μs
Self CPU Time 0.00 μs
Self Device Time 444021.36 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 248516.71 μs
Device Time 706170.05 μs
Self CPU Time 248516.71 μs
Self Device Time 706170.05 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 6522253.04 μs
Self CPU Time 0.00 μs
Self Device Time 6522253.04 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45280 warnings generated when compiling for host.
Suppressed 45319 warnings (45272 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_94/b5_s2_mse_warp_reduction/base/base.cu:19:15 bugprone-narrowing-conversions
19 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_94/b5_s2_mse_warp_reduction/base/base.cu:20:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
20 | int stride = gridDim.x * blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_94/b5_s2_mse_warp_reduction/base/base.cu:36:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
36 | int lane = threadIdx.x % WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_94/b5_s2_mse_warp_reduction/base/base.cu:37:18: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int warpId = threadIdx.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_94/b5_s2_mse_warp_reduction/base/base.cu:48:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
48 | int numWarps = blockDim.x / WARP_SIZE;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_1/task_94/b5_s2_mse_warp_reduction/base/base.cu:74:5: warning: inside a lambda, '__func__' expands to the name of the function call operator; consider capturing the name of the enclosing function explicitly [bugprone-lambda-function-name]
74 | AT_DISPATCH_FLOATING_TYPES(predictions.scalar_type(), "mse_forward_cuda_warp", ([&]() {
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:237:34: note: expanded from macro 'AT_DISPATCH_FLOATING_TYPES'
237 | AT_DISPATCH_SWITCH(TYPE, NAME, AT_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:233:3: note: expanded from macro 'AT_DISPATCH_CASE_FLOATING_TYPES'
233 | AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:74:3: note: expanded from macro 'AT_DISPATCH_CASE'
74 | AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, scalar_t, __VA_ARGS__)
| ^
note: (skipping 1 expansions in backtrace; use -fmacro-backtrace-limit=0 to see all)
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/ATen/Dispatch.h:58:7: note: expanded from macro 'AT_PRIVATE_CHECK_SELECTIVE_BUILD'
58 | AT_ERROR( \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:711:32: note: expanded from macro 'AT_ERROR'
711 | C10_EXPAND_MSVC_WORKAROUND(TORCH_CHECK(false, ::c10::str(__VA_ARGS__))); \
| ^
/home/robert_sakana_ai/miniconda3/envs/llm2cuda/lib/python3.11/site-packages/torch/include/c10/util/Exception.h:536:9: note: expanded from macro 'TORCH_CHECK'
536 | __func__, \
| ^