import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
"""
Computes the Cross Entropy Loss for multi-class classification tasks.
Args:
predictions (torch.Tensor): Predicted values.
targets (torch.Tensor): Target values.
Returns:
torch.Tensor: Cross Entropy Loss.
"""
return F.cross_entropy(predictions, targets)
class Model(nn.Module):
"""
A model that computes Cross Entropy Loss for multi-class classification tasks.
Parameters:
None
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, predictions, targets, fn=module_fn):
return fn(predictions, targets)
batch_size = 4096
num_classes = 10
input_shape = (num_classes,) # Output for each class
dim = 1
def get_inputs():
return [
torch.randn(batch_size, *input_shape),
torch.randint(0, num_classes, (batch_size,)),
]
def get_init_inputs():
return []
import torch
import torch.nn as nn
class Model(nn.Module):
"""
A model that computes Cross Entropy Loss for multi-class classification tasks.
Parameters:
None
"""
def __init__(self):
super(Model, self).__init__()
def forward(self, predictions, targets):
return torch.nn.functional.cross_entropy(predictions, targets)
batch_size = 4096
num_classes = 10
input_shape = (num_classes, ) # Output for each class
dim = 1
def get_inputs():
return [torch.randn(batch_size, *input_shape), torch.randint(0, num_classes, (batch_size,))]
def get_init_inputs():
return []
#include <torch/extension.h>
#include <cuda_runtime.h>
#include <math.h>
// Device function to compute the maximum logit for numerical stability
__device__ __forceinline__ float compute_max_logit(const float* logits, int num_classes) {
float max_logit = logits[0];
for (int i = 1; i < num_classes; i++) {
max_logit = fmaxf(max_logit, logits[i]);
}
return max_logit;
}
// Device function to compute the sum of exponentials, subtracting the max logit
__device__ __forceinline__ float compute_sum_exp(const float* logits, int num_classes, float max_logit) {
float sum_exp = 0.0f;
for (int i = 0; i < num_classes; i++) {
sum_exp += expf(logits[i] - max_logit);
}
return sum_exp;
}
// CUDA kernel using modular device functions
__global__ void cross_entropy_loss_kernel_modular(
const float* __restrict__ logits,
const int64_t* __restrict__ targets,
float* __restrict__ losses,
int batch_size,
int num_classes
) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= batch_size) return;
// Pointer to the start of the current sample's logits
const float* logits_sample = logits + idx * num_classes;
int64_t target = targets[idx];
// Use modular functions for computation
float max_logit = compute_max_logit(logits_sample, num_classes);
float sum_exp = compute_sum_exp(logits_sample, num_classes, max_logit);
// Compute the final loss for the sample
float loss = -(logits_sample[target] - max_logit - logf(sum_exp));
losses[idx] = loss;
}
// Forward function for the CUDA module
torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
TORCH_CHECK(predictions.is_cuda(), "predictions must be a CUDA tensor");
TORCH_CHECK(targets.is_cuda(), "targets must be a CUDA tensor");
TORCH_CHECK(predictions.dim() == 2, "predictions must be a 2D tensor");
TORCH_CHECK(targets.dim() == 1, "targets must be a 1D tensor");
TORCH_CHECK(predictions.dtype() == torch::kFloat32, "predictions must be Float32 tensor");
TORCH_CHECK(targets.dtype() == torch::kInt64, "targets must be Int64 tensor");
int batch_size = predictions.size(0);
int num_classes = predictions.size(1);
TORCH_CHECK(targets.size(0) == batch_size, "targets must have same batch size as predictions");
// Allocate output tensor for losses per sample
auto losses = torch::empty({batch_size}, predictions.options());
// Configure kernel launch parameters
int threads = 256;
int blocks = (batch_size + threads - 1) / threads;
cross_entropy_loss_kernel_modular<<<blocks, threads>>>(
predictions.data_ptr<float>(),
targets.data_ptr<int64_t>(),
losses.data_ptr<float>(),
batch_size,
num_classes
);
// Check for any kernel launch errors
cudaError_t err = cudaGetLastError();
TORCH_CHECK(err == cudaSuccess, "Error in cross_entropy_loss_kernel_modular: ", cudaGetErrorString(err));
// Compute the mean loss over the batch
auto loss = losses.mean();
return loss;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Cross Entropy Loss forward (CUDA)");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.548 | inst/cycle | 0.001 | 5 |
Executed Ipc Elapsed | 0.030 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 13.958 | % | 0.697 | 5 |
Issued Ipc Active | 0.560 | inst/cycle | 0.001 | 5 |
SM Busy | 13.958 | % | 0.697 | 5 |
Memory Throughput | 52080526102.576 | byte/second | 783065165482179584.000 | 5 |
Mem Busy | 8.814 | % | 0.022 | 5 |
Max Bandwidth | 4.802 | % | 0.005 | 5 |
L1/TEX Hit Rate | 92.360 | % | 0.000 | 5 |
L2 Hit Rate | 87.498 | % | 0.291 | 5 |
Mem Pipes Busy | 0.378 | % | 0.000 | 5 |
Warp Cycles Per Issued Instruction | 13.374 | cycle | 0.010 | 5 |
Warp Cycles Per Executed Instruction | 13.632 | cycle | 0.010 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 29.840 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 32.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 11.934 | % | 0.007 | 5 |
Achieved Active Warps Per SM | 7.640 | warp | 0.003 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (11.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::to | ||
CPU Time | 324887.97 | μs |
Device Time | 11.26 | μs |
Self CPU Time | 37.65 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_to_copy | ||
CPU Time | 324850.32 | μs |
Device Time | 11.26 | μs |
Self CPU Time | 87.21 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::empty_strided | ||
CPU Time | 324642.72 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 71.94 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaDeviceGetStreamPriorityRange | ||
CPU Time | 324370.70 | μs |
Device Time | 0.00 | μs |
Self CPU Time | 324370.70 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 724091.53 | μs |
Device Time | 140705.54 | μs |
Self CPU Time | 724091.53 | μs |
Self Device Time | 140705.54 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::mean | ||
CPU Time | 174819.72 | μs |
Device Time | 53510.45 | μs |
Self CPU Time | 99925.42 | μs |
Self Device Time | 53510.45 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 103242.92 | μs |
Device Time | 996867.09 | μs |
Self CPU Time | 24882.91 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::fill_ | ||
CPU Time | 78363.31 | μs |
Device Time | 996867.09 | μs |
Self CPU Time | 27753.63 | μs |
Self Device Time | 996867.09 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>) | ||
CPU Time | 0.00 | μs |
Device Time | 996867.09 | μs |
Self CPU Time | 0.00 | μs |
Self Device Time | 996867.09 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45283 warnings generated when compiling for host. Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.