← Back to Leaderboard

The AI CUDA Engineer 👷

95_CrossEntropyLossmodular_crossentropy_base

Level 1 • Task 95
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
    """
    Computes the Cross Entropy Loss for multi-class classification tasks.

    Args:
        predictions (torch.Tensor): Predicted values.
        targets (torch.Tensor): Target values.

    Returns:
        torch.Tensor: Cross Entropy Loss.
    """
    return F.cross_entropy(predictions, targets)


class Model(nn.Module):
    """
    A model that computes Cross Entropy Loss for multi-class classification tasks.

    Parameters:
        None
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets, fn=module_fn):
        return fn(predictions, targets)


batch_size = 4096
num_classes = 10
input_shape = (num_classes,)  # Output for each class
dim = 1


def get_inputs():
    return [
        torch.randn(batch_size, *input_shape),
        torch.randint(0, num_classes, (batch_size,)),
    ]


def get_init_inputs():
    return []
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that computes Cross Entropy Loss for multi-class classification tasks.

    Parameters:
        None
    """
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets):
        return torch.nn.functional.cross_entropy(predictions, targets)

batch_size = 4096
num_classes = 10
input_shape = (num_classes, )  # Output for each class
dim = 1

def get_inputs():
    return [torch.randn(batch_size, *input_shape), torch.randint(0, num_classes, (batch_size,))]

def get_init_inputs():
    return []

Kernel Information

Related Kernels (Level 1, Task 95 • 95_CrossEntropyLoss)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 95_CrossEntropyLoss 0.01 8.97 2.45
🥇 memory_coalescing_base 0.01 8.97 2.45
🥇 block_size_experimentation_base 0.01 8.97 2.45
🥇 stride_loop_boundary_optimization_base 0.01 8.97 2.45
🥇 optimized_thread_block_mapping_base_base 0.01 8.97 2.45
🥇 optimal_blocksize_experiment_base 0.01 8.97 2.45
🥇 modular_crossentropy_base 0.01 8.97 2.45
🥇 warp_aligned_base_base 0.01 8.97 2.45
🥇 warp_divergence_minimization_base_base 0.01 8.97 2.45
🥇 modularized_device_functions_base 0.01 8.97 2.45
🥇 ce_loss_unroll_optimized_base 0.01 8.97 2.45
🥇 ce_loss_ldg_aligned_base 0.01 8.97 2.45
🥇 ce_loss_optimized_blocksize_512_base 0.01 8.97 2.45
🥇 ce_loss_grid_stride_unroll_edit_1 0.01 8.97 2.45
🥇 ce_loss_ldg_aligned_edit_1 0.01 8.97 2.45
🥇 stride_loop_optimization_base_base 0.01 8.97 2.45
🥇 ldg_aligned_access_base 0.01 8.97 2.45
🥇 modular_device_ce_loss_base 0.01 8.97 2.45
🥇 ce_loss_stride_base 0.01 8.97 2.45
🥇 atomic_optimized_crossentropy_edit_1 0.01 8.97 2.45
#include <torch/extension.h>
#include <cuda_runtime.h>
#include <math.h>

// Device function to compute the maximum logit for numerical stability
__device__ __forceinline__ float compute_max_logit(const float* logits, int num_classes) {
    float max_logit = logits[0];
    for (int i = 1; i < num_classes; i++) {
        max_logit = fmaxf(max_logit, logits[i]);
    }
    return max_logit;
}

// Device function to compute the sum of exponentials, subtracting the max logit
__device__ __forceinline__ float compute_sum_exp(const float* logits, int num_classes, float max_logit) {
    float sum_exp = 0.0f;
    for (int i = 0; i < num_classes; i++) {
        sum_exp += expf(logits[i] - max_logit);
    }
    return sum_exp;
}

// CUDA kernel using modular device functions
__global__ void cross_entropy_loss_kernel_modular(
    const float* __restrict__ logits,
    const int64_t* __restrict__ targets,
    float* __restrict__ losses,
    int batch_size,
    int num_classes
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= batch_size) return;
    
    // Pointer to the start of the current sample's logits
    const float* logits_sample = logits + idx * num_classes;
    int64_t target = targets[idx];
    
    // Use modular functions for computation
    float max_logit = compute_max_logit(logits_sample, num_classes);
    float sum_exp = compute_sum_exp(logits_sample, num_classes, max_logit);
    
    // Compute the final loss for the sample
    float loss = -(logits_sample[target] - max_logit - logf(sum_exp));
    losses[idx] = loss;
}

// Forward function for the CUDA module
torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
    TORCH_CHECK(predictions.is_cuda(), "predictions must be a CUDA tensor");
    TORCH_CHECK(targets.is_cuda(), "targets must be a CUDA tensor");

    TORCH_CHECK(predictions.dim() == 2, "predictions must be a 2D tensor");
    TORCH_CHECK(targets.dim() == 1, "targets must be a 1D tensor");

    TORCH_CHECK(predictions.dtype() == torch::kFloat32, "predictions must be Float32 tensor");
    TORCH_CHECK(targets.dtype() == torch::kInt64, "targets must be Int64 tensor");

    int batch_size = predictions.size(0);
    int num_classes = predictions.size(1);

    TORCH_CHECK(targets.size(0) == batch_size, "targets must have same batch size as predictions");

    // Allocate output tensor for losses per sample
    auto losses = torch::empty({batch_size}, predictions.options());

    // Configure kernel launch parameters
    int threads = 256;
    int blocks = (batch_size + threads - 1) / threads;

    cross_entropy_loss_kernel_modular<<<blocks, threads>>>(
        predictions.data_ptr<float>(),
        targets.data_ptr<int64_t>(),
        losses.data_ptr<float>(),
        batch_size,
        num_classes
    );

    // Check for any kernel launch errors
    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "Error in cross_entropy_loss_kernel_modular: ", cudaGetErrorString(err));

    // Compute the mean loss over the batch
    auto loss = losses.mean();
    return loss;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Cross Entropy Loss forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.548 inst/cycle 0.001 5
Executed Ipc Elapsed 0.030 inst/cycle 0.000 5
Issue Slots Busy 13.958 % 0.697 5
Issued Ipc Active 0.560 inst/cycle 0.001 5
SM Busy 13.958 % 0.697 5
Memory Throughput 52080526102.576 byte/second 783065165482179584.000 5
Mem Busy 8.814 % 0.022 5
Max Bandwidth 4.802 % 0.005 5
L1/TEX Hit Rate 92.360 % 0.000 5
L2 Hit Rate 87.498 % 0.291 5
Mem Pipes Busy 0.378 % 0.000 5
Warp Cycles Per Issued Instruction 13.374 cycle 0.010 5
Warp Cycles Per Executed Instruction 13.632 cycle 0.010 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.840 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 11.934 % 0.007 5
Achieved Active Warps Per SM 7.640 warp 0.003 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (11.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 324887.97 μs
Device Time 11.26 μs
Self CPU Time 37.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 324850.32 μs
Device Time 11.26 μs
Self CPU Time 87.21 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 324642.72 μs
Device Time 0.00 μs
Self CPU Time 71.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 324370.70 μs
Device Time 0.00 μs
Self CPU Time 324370.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 724091.53 μs
Device Time 140705.54 μs
Self CPU Time 724091.53 μs
Self Device Time 140705.54 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::mean
CPU Time 174819.72 μs
Device Time 53510.45 μs
Self CPU Time 99925.42 μs
Self Device Time 53510.45 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 103242.92 μs
Device Time 996867.09 μs
Self CPU Time 24882.91 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 78363.31 μs
Device Time 996867.09 μs
Self CPU Time 27753.63 μs
Self Device Time 996867.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 996867.09 μs
Self CPU Time 0.00 μs
Self Device Time 996867.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45283 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:15:71 bugprone-easily-swappable-parameters
15 | __device__ __forceinline__ float compute_sum_exp(const float* logits, int num_classes, float max_logit) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:15:75: note: the first parameter in the range is 'num_classes'
15 | __device__ __forceinline__ float compute_sum_exp(const float* logits, int num_classes, float max_logit) {
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:15:94: note: the last parameter in the range is 'max_logit'
15 | __device__ __forceinline__ float compute_sum_exp(const float* logits, int num_classes, float max_logit) {
| ^~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:15:88: note: 'int' and 'float' may be implicitly converted
15 | __device__ __forceinline__ float compute_sum_exp(const float* logits, int num_classes, float max_logit) {
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:28:5: warning: 2 adjacent parameters of 'cross_entropy_loss_kernel_modular' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
28 | int batch_size,
| ^~~~~~~~~~~~~~~
29 | int num_classes
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:28:9: note: the first parameter in the range is 'batch_size'
28 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:29:9: note: the last parameter in the range is 'num_classes'
29 | int num_classes
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:31:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int idx = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:35:34: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
35 | const float* logits_sample = logits + idx * num_classes;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:35:43: note: make conversion explicit to silence this warning
4 | const float* logits_sample = logits + idx * num_classes;
| ^~~~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:35:43: note: perform multiplication in a wider type
35 | const float* logits_sample = logits + idx * num_classes;
| ^~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:48:37: warning: the parameter 'predictions' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
48 | torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:48:64: warning: the parameter 'targets' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
48 | torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:58:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
58 | int batch_size = predictions.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b5_s0_modular_crossentropy/base/base.cu:59:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
59 | int num_classes = predictions.size(1);
| ^