← Back to Leaderboard

The AI CUDA Engineer 👷

95_CrossEntropyLossstride_loop_optimization_base_base

Level 1 • Task 95
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(predictions: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
    """
    Computes the Cross Entropy Loss for multi-class classification tasks.

    Args:
        predictions (torch.Tensor): Predicted values.
        targets (torch.Tensor): Target values.

    Returns:
        torch.Tensor: Cross Entropy Loss.
    """
    return F.cross_entropy(predictions, targets)


class Model(nn.Module):
    """
    A model that computes Cross Entropy Loss for multi-class classification tasks.

    Parameters:
        None
    """

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets, fn=module_fn):
        return fn(predictions, targets)


batch_size = 4096
num_classes = 10
input_shape = (num_classes,)  # Output for each class
dim = 1


def get_inputs():
    return [
        torch.randn(batch_size, *input_shape),
        torch.randint(0, num_classes, (batch_size,)),
    ]


def get_init_inputs():
    return []
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    A model that computes Cross Entropy Loss for multi-class classification tasks.

    Parameters:
        None
    """
    def __init__(self):
        super(Model, self).__init__()

    def forward(self, predictions, targets):
        return torch.nn.functional.cross_entropy(predictions, targets)

batch_size = 4096
num_classes = 10
input_shape = (num_classes, )  # Output for each class
dim = 1

def get_inputs():
    return [torch.randn(batch_size, *input_shape), torch.randint(0, num_classes, (batch_size,))]

def get_init_inputs():
    return []

Kernel Information

Related Kernels (Level 1, Task 95 • 95_CrossEntropyLoss)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 95_CrossEntropyLoss 0.01 8.97 2.45
🥇 memory_coalescing_base 0.01 8.97 2.45
🥇 block_size_experimentation_base 0.01 8.97 2.45
🥇 stride_loop_boundary_optimization_base 0.01 8.97 2.45
🥇 optimized_thread_block_mapping_base_base 0.01 8.97 2.45
🥇 optimal_blocksize_experiment_base 0.01 8.97 2.45
🥇 modular_crossentropy_base 0.01 8.97 2.45
🥇 warp_aligned_base_base 0.01 8.97 2.45
🥇 warp_divergence_minimization_base_base 0.01 8.97 2.45
🥇 modularized_device_functions_base 0.01 8.97 2.45
🥇 ce_loss_unroll_optimized_base 0.01 8.97 2.45
🥇 ce_loss_ldg_aligned_base 0.01 8.97 2.45
🥇 ce_loss_optimized_blocksize_512_base 0.01 8.97 2.45
🥇 ce_loss_grid_stride_unroll_edit_1 0.01 8.97 2.45
🥇 ce_loss_ldg_aligned_edit_1 0.01 8.97 2.45
🥇 stride_loop_optimization_base_base 0.01 8.97 2.45
🥇 ldg_aligned_access_base 0.01 8.97 2.45
🥇 modular_device_ce_loss_base 0.01 8.97 2.45
🥇 ce_loss_stride_base 0.01 8.97 2.45
🥇 atomic_optimized_crossentropy_edit_1 0.01 8.97 2.45
#include <torch/extension.h>

__global__ void cross_entropy_loss_kernel_stride(
    const float* __restrict__ logits,
    const int64_t* __restrict__ targets,
    float* __restrict__ losses,
    int batch_size,
    int num_classes
)
{
    const int total_threads = blockDim.x * gridDim.x;
    int tid = blockIdx.x * blockDim.x + threadIdx.x;

    // Stride loop for workload distribution
    for (int i = tid; i < batch_size; i += total_threads) {
        const float* logits_i = logits + i * num_classes;
        int64_t target = targets[i];

        // Branchless max reduction
        float max_logit = logits_i[0];
        for (int j = 1; j < num_classes; ++j) {
            max_logit = fmaxf(max_logit, logits_i[j]);
        }

        // Vectorized exp sum
        float sum_exp = 0.0f;
        for (int j = 0; j < num_classes; ++j) {
            sum_exp += expf(logits_i[j] - max_logit);
        }

        losses[i] = -(logits_i[target] - max_logit - logf(sum_exp));
    }
}

torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
    TORCH_CHECK(predictions.is_cuda(), "predictions must be a CUDA tensor");
    TORCH_CHECK(targets.is_cuda(), "targets must be a CUDA tensor");
    TORCH_CHECK(predictions.dim() == 2, "predictions must be a 2D tensor");
    TORCH_CHECK(targets.dim() == 1, "targets must be a 1D tensor");

    const int batch_size = predictions.size(0);
    const int num_classes = predictions.size(1);
    auto losses = torch::empty({batch_size}, predictions.options());

    // Optimized launch configuration
    const int threads = 256;
    const int blocks = (batch_size + threads - 1) / threads;

    cross_entropy_loss_kernel_stride<<<blocks, threads>>>(
        predictions.data_ptr<float>(),
        targets.data_ptr<int64_t>(),
        losses.data_ptr<float>(),
        batch_size,
        num_classes
    );

    cudaError_t err = cudaGetLastError();
    TORCH_CHECK(err == cudaSuccess, "CUDA error: ", cudaGetErrorString(err));
    
    return losses.mean();
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized CrossEntropyLoss forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.514 inst/cycle 0.000 5
Executed Ipc Elapsed 0.030 inst/cycle 0.000 5
Issue Slots Busy 13.278 % 0.105 5
Issued Ipc Active 0.530 inst/cycle 0.000 5
SM Busy 13.278 % 0.105 5
Memory Throughput 52731781883.362 byte/second 331259100094932352.000 5
Mem Busy 8.658 % 0.019 5
Max Bandwidth 4.742 % 0.001 5
L1/TEX Hit Rate 92.360 % 0.000 5
L2 Hit Rate 90.042 % 0.027 5
Mem Pipes Busy 0.386 % 0.000 5
Warp Cycles Per Issued Instruction 14.540 cycle 0.416 5
Warp Cycles Per Executed Instruction 15.026 cycle 0.442 5
Avg. Active Threads Per Warp 32.000 0.000 5
Avg. Not Predicated Off Threads Per Warp 28.980 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 11.900 % 0.013 5
Achieved Active Warps Per SM 7.614 warp 0.005 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (11.8%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 743948.57 μs
Device Time 11.33 μs
Self CPU Time 55.31 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 743893.26 μs
Device Time 11.33 μs
Self CPU Time 127.19 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 743612.59 μs
Device Time 0.00 μs
Self CPU Time 118.60 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 740445.71 μs
Device Time 0.00 μs
Self CPU Time 740445.71 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 778315.46 μs
Device Time 8437.38 μs
Self CPU Time 778315.46 μs
Self Device Time 8437.38 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::mean
CPU Time 222407.66 μs
Device Time 56045.11 μs
Self CPU Time 101369.75 μs
Self Device Time 56045.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::reduce_kernel<512, 1, at::native::ReduceOp<float, at::native::MeanOps<float, float, float, float>, unsigned int, float, 4> >(at::native::ReduceOp<float, at::native::MeanOps<float, float, float, float>, unsigned int, float, 4>)
CPU Time 0.00 μs
Device Time 56045.11 μs
Self CPU Time 0.00 μs
Self Device Time 56045.11 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 102200.49 μs
Device Time 1018201.95 μs
Self CPU Time 23969.52 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 78232.71 μs
Device Time 1018201.95 μs
Self CPU Time 25627.70 μs
Self Device Time 1018201.95 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 1018280.57 μs
Self CPU Time 0.00 μs
Self Device Time 1018280.57 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45283 warnings generated when compiling for host.
Suppressed 45322 warnings (45275 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:7:5 bugprone-easily-swappable-parameters
7 | int batch_size,
| ^~~~~~~~~~~~~~~
8 | int num_classes
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:7:9: note: the first parameter in the range is 'batch_size'
7 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:8:9: note: the last parameter in the range is 'num_classes'
8 | int num_classes
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:11:31: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
11 | const int total_threads = blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:12:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
12 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:16:33: warning: result of multiplication in type 'int' is used as a pointer offset after an implicit widening conversion to type 'ptrdiff_t' [bugprone-implicit-widening-of-multiplication-result]
16 | const float* logits_i = logits + i * num_classes;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:16:42: note: make conversion explicit to silence this warning
2 |
3 | __global__ void cross_entropy_loss_kernel_stride(
4 | const float* __restrict__ logits,
5 | const int64_t* __restrict__ targets,
6 | float* __restrict__ losses,
7 | int batch_size,
8 | int num_classes
9 | )
10 | {
11 | const int total_threads = blockDim.x * gridDim.x;
12 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
13 |
14 | // Stride loop for workload distribution
15 | for (int i = tid; i < batch_size; i += total_threads) {
16 | const float* logits_i = logits + i * num_classes;
| ^~~~~~~~~~~~~~~
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:16:42: note: perform multiplication in a wider type
16 | const float* logits_i = logits + i * num_classes;
| ^
| static_cast<ptrdiff_t>( )
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:35:37: warning: the parameter 'predictions' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
35 | torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:35:64: warning: the parameter 'targets' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
35 | torch::Tensor forward(torch::Tensor predictions, torch::Tensor targets) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:41:28: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
41 | const int batch_size = predictions.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250202_optimize_b10_s4_e0_sweep/level_1/task_95/b6_s3_stride_loop_optimization_base/base/base.cu:42:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
42 | const int num_classes = predictions.size(1);
| ^