20_ConvTranspose3d_Sum_ResidualAdd_Multiply_ResidualAdd
• reduced_sync_kernel_base_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
stride: int,
padding: int,
output_padding: int,
conv_transpose: torch.Tensor,
conv_transpose_bias: torch.Tensor,
bias: torch.Tensor,
) -> torch.Tensor:
"""
Applies a 3D transposed convolution followed by bias addition and residual operations.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
stride (int): Stride of the transposed convolution
padding (int): Padding of the transposed convolution
output_padding (int): Additional size added to output shape
conv_transpose (torch.Tensor): Transposed convolution weight tensor
conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
bias (torch.Tensor): Bias tensor for addition
Returns:
torch.Tensor: Output tensor after applying operations
"""
x = F.conv_transpose3d(
x,
conv_transpose,
bias=conv_transpose_bias,
stride=stride,
padding=padding,
output_padding=output_padding,
)
original_x = x.clone().detach()
x = x + bias
x = x + original_x
x = x * original_x
x = x + original_x
return x
class Model(nn.Module):
"""
Model that performs a 3D transposed convolution, followed by a sum,
a residual add, a multiplication, and another residual add.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
bias_shape,
):
super(Model, self).__init__()
conv_transpose = nn.ConvTranspose3d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
)
self.conv_transpose_parameter = conv_transpose.weight
self.conv_transpose_bias = nn.Parameter(
conv_transpose.bias + torch.ones_like(conv_transpose.bias) * 0.02
) # make sure its nonzero
self.bias_parameter = nn.Parameter(torch.randn(bias_shape) * 0.02)
def forward(self, x, stride, padding, output_padding, fn=module_fn):
return fn(
x,
stride,
padding,
output_padding,
self.conv_transpose_parameter,
self.conv_transpose_bias,
self.bias_parameter,
)
batch_size = 16
in_channels = 32
out_channels = 64
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
bias_shape = (out_channels, 1, 1, 1)
def get_inputs():
return [
torch.randn(batch_size, in_channels, depth, height, width),
stride,
padding,
output_padding,
]
def get_init_inputs():
return [
in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
bias_shape,
]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Model that performs a 3D transposed convolution, followed by a sum,
a residual add, a multiplication, and another residual add.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, bias_shape):
super(Model, self).__init__()
self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
self.conv_transpose.bias = nn.Parameter(self.conv_transpose.bias + torch.ones_like(self.conv_transpose.bias) * 0.02)
self.bias = nn.Parameter(torch.randn(bias_shape)*0.02)
def forward(self, x):
x = self.conv_transpose(x)
original_x = x.clone().detach()
x = x + self.bias
x = x + original_x
x = x * original_x
x = x + original_x
return x
batch_size = 16
in_channels = 32
out_channels = 64
depth, height, width = 16, 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
bias_shape = (out_channels, 1, 1, 1)
def get_inputs():
return [torch.randn(batch_size, in_channels, depth, height, width)]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, stride, padding, output_padding, bias_shape]
#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
__global__ void reduced_sync_kernel(
const float* __restrict__ conv_output,
const float* __restrict__ element_bias,
float* __restrict__ output,
int num_elements,
int channels,
int spatial_size
) {
extern __shared__ float shared_bias[];
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
int lane = threadIdx.x;
// Load bias into shared memory
for (int c = lane; c < channels; c += blockDim.x) {
shared_bias[c] = element_bias[c];
}
__syncthreads(); // Ensure all threads have loaded the bias
// Process elements in groups of 4 (128-bit aligned)
int num_vec = num_elements / 4;
for (int i = tid; i < num_vec; i += stride) {
int base_idx = i * 4;
float4 in_val = __ldg(reinterpret_cast<const float4*>(conv_output) + i);
float4 result;
int c0 = (base_idx / spatial_size) % channels;
int c1 = ((base_idx + 1) / spatial_size) % channels;
int c2 = ((base_idx + 2) / spatial_size) % channels;
int c3 = ((base_idx + 3) / spatial_size) % channels;
float b0 = shared_bias[c0];
float b1 = shared_bias[c1];
float b2 = shared_bias[c2];
float b3 = shared_bias[c3];
result.x = in_val.x * (2.0f * in_val.x + b0 + 1.0f);
result.y = in_val.y * (2.0f * in_val.y + b1 + 1.0f);
result.z = in_val.z * (2.0f * in_val.z + b2 + 1.0f);
result.w = in_val.w * (2.0f * in_val.w + b3 + 1.0f);
reinterpret_cast<float4*>(output)[i] = result;
}
// Handle remaining elements
int remaining_start = num_vec * 4;
for (int i = tid + remaining_start; i < num_elements; i += stride) {
int c = (i / spatial_size) % channels;
float orig = __ldg(conv_output + i);
float b = shared_bias[c];
output[i] = orig * (2.0f * orig + b + 1.0f);
}
}
torch::Tensor forward(
torch::Tensor x,
int stride,
int padding,
int output_padding,
torch::Tensor conv_transpose,
torch::Tensor conv_transpose_bias,
torch::Tensor bias
) {
auto conv_result = torch::conv_transpose3d(
x,
conv_transpose,
conv_transpose_bias,
stride,
padding,
output_padding
);
auto sizes = conv_result.sizes();
const int channels = sizes[1];
const int spatial_size = sizes[2] * sizes[3] * sizes[4];
const int num_elements = conv_result.numel();
auto output = torch::empty_like(conv_result);
const int threads_per_block = 512; // Larger block size for better performance
int max_blocks = (num_elements + threads_per_block - 1) / threads_per_block;
int blocks = (max_blocks < 1024) ? max_blocks : 1024;
size_t shared_mem_size = channels * sizeof(float);
reduced_sync_kernel<<<blocks, threads_per_block, shared_mem_size>>>(
conv_result.data_ptr<float>(),
bias.data_ptr<float>(),
output.data_ptr<float>(),
num_elements,
channels,
spatial_size
);
return output;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "Fused ConvTranspose3D with Reduced Synchronization");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 2.248 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 2.096 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 56.240 | % | 0.028 | 5 |
Issued Ipc Active | 2.248 | inst/cycle | 0.000 | 5 |
SM Busy | 56.240 | % | 0.028 | 5 |
Memory Throughput | 2825144950767.830 | byte/second | 203650958220320145408.000 | 5 |
Mem Busy | 44.820 | % | 0.053 | 5 |
Max Bandwidth | 84.282 | % | 0.182 | 5 |
L1/TEX Hit Rate | 0.020 | % | 0.000 | 5 |
L2 Hit Rate | 50.806 | % | 0.003 | 5 |
Mem Pipes Busy | 8.350 | % | 0.002 | 5 |
Warp Cycles Per Issued Instruction | 25.894 | cycle | 0.009 | 5 |
Warp Cycles Per Executed Instruction | 25.896 | cycle | 0.009 | 5 |
Avg. Active Threads Per Warp | 32.000 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 26.270 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 4.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 12.000 | block | 0.000 | 5 |
Block Limit Warps | 4.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 91.166 | % | 0.031 | 5 |
Achieved Active Warps Per SM | 58.348 | warp | 0.014 | 5 |
Rule | Description |
---|---|
INF HighPipeUtilization | ALU is the highest-utilized pipeline (49.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
INF Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. |
Operation / Metric | Value | Unit |
---|---|---|
aten::conv_transpose3d | ||
CPU Time | 1883665.82 | μs |
Device Time | 5183833.69 | μs |
Self CPU Time | 8293.02 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::convolution | ||
CPU Time | 1875372.80 | μs |
Device Time | 5183833.69 | μs |
Self CPU Time | 10672.20 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_convolution | ||
CPU Time | 1864700.60 | μs |
Device Time | 5183833.69 | μs |
Self CPU Time | 21641.27 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::cudnn_convolution_transpose | ||
CPU Time | 535331.59 | μs |
Device Time | 3187567.20 | μs |
Self CPU Time | 142057.24 | μs |
Self Device Time | 3187567.20 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaEventRecord | ||
CPU Time | 1890733.08 | μs |
Device Time | 165971.86 | μs |
Self CPU Time | 1890733.08 | μs |
Self Device Time | 165971.86 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 4678320.50 | μs |
Device Time | 84171.51 | μs |
Self CPU Time | 4678320.50 | μs |
Self Device Time | 84171.51 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::add_ | ||
CPU Time | 1301790.90 | μs |
Device Time | 1996266.49 | μs |
Self CPU Time | 18952.88 | μs |
Self Device Time | 1996266.49 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45293 warnings generated when compiling for host. Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.