← Back to Leaderboard

The AI CUDA Engineer 👷

25_Conv2d_Min_Tanh_Tanhwarp_divergence_optimized_conv_base

Level 2 • Task 25
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies convolution, minimum operation along channels, and double tanh activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Convolution bias tensor of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor after applying convolution, min operation and double tanh,
            with shape (batch_size, 1, height', width') where:
            height' = height - kernel_size + 1
            width' = width - kernel_size + 1
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = torch.min(x, dim=1, keepdim=True)[0]
    x = torch.tanh(x)
    x = torch.tanh(x)
    return x


class Model(nn.Module):
    """
    Model that performs a convolution, applies minimum operation, Tanh, and another Tanh.
    """

    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = nn.Parameter(
            conv.bias + torch.ones_like(conv.bias) * 0.02
        )  # make sure its nonzero

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias)


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a convolution, applies minimum operation, Tanh, and another Tanh.
    """
    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.ones_like(self.conv.bias) * 0.02)

    def forward(self, x):
        x = self.conv(x)
        x = torch.min(x, dim=1, keepdim=True)[0] # Apply minimum operation along the channel dimension
        x = torch.tanh(x)
        x = torch.tanh(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>
#include <cstdio>

// Optimized CUDA kernel to minimize warp divergence
__global__ void optimized_conv_min_tanh_forward_kernel(
    const float* __restrict__ x,           // Input tensor: [B, C_in, H, W]
    const float* __restrict__ weight,      // Convolution weight: [C_out, C_in, K, K]
    const float* __restrict__ bias,        // Convolution bias: [C_out]
    float* __restrict__ output,            // Output tensor: [B, 1, H_out, W_out]
    const int batch,
    const int in_channels,
    const int in_height,
    const int in_width,
    const int out_channels,
    const int kernel_size,
    const int out_height,
    const int out_width) {

    extern __shared__ float shared_mem[];
    const int weight_elems = out_channels * in_channels * kernel_size * kernel_size;
    float* s_weight = shared_mem; 
    float* s_bias = shared_mem + weight_elems;

    int tid = threadIdx.x;
    int blockThreads = blockDim.x;
    for (int i = tid; i < weight_elems; i += blockThreads) {
        s_weight[i] = weight[i];
    }
    for (int i = tid; i < out_channels; i += blockThreads) {
        s_bias[i] = bias[i];
    }
    __syncthreads();

    int index = blockIdx.x * blockDim.x + tid;
    int total_threads = batch * out_height * out_width;
    if (index >= total_threads) return;

    int b = index / (out_height * out_width);
    int rem = index % (out_height * out_width);
    int out_y = rem / out_width;
    int out_x = rem % out_width;

    float min_val = 1e20f;

    for (int oc = 0; oc < out_channels; ++oc) {
        float conv_sum = s_bias[oc];
        for (int ic = 0; ic < in_channels; ++ic) {
            #pragma unroll
            for (int ky = 0; ky < kernel_size; ++ky) {
                #pragma unroll
                for (int kx = 0; kx < kernel_size; ++kx) {
                    int in_y = out_y + ky;
                    int in_x = out_x + kx;
                    int x_index = b * (in_channels * in_height * in_width) +
                                  ic * (in_height * in_width) +
                                  in_y * in_width + in_x;
                    int w_index = oc * (in_channels * kernel_size * kernel_size) +
                                  ic * (kernel_size * kernel_size) +
                                  ky * kernel_size + kx;
                    conv_sum += x[x_index] * s_weight[w_index];
                }
            }
        }
        min_val = fminf(min_val, conv_sum);
    }

    float activated = tanhf(tanhf(min_val));
    int out_index = b * (out_height * out_width) + out_y * out_width + out_x;
    output[out_index] = activated;
}

void optimized_conv_min_tanh_forward_cuda(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias,
    at::Tensor output) {

    const int batch = x.size(0);
    const int in_channels = x.size(1);
    const int in_height = x.size(2);
    const int in_width = x.size(3);

    const int out_channels = conv_weight.size(0);
    const int kernel_size = conv_weight.size(2);
    const int out_height = in_height - kernel_size + 1;
    const int out_width = in_width - kernel_size + 1;

    const int total_outputs = batch * out_height * out_width;
    const int threads = 256;
    const int blocks = (total_outputs + threads - 1) / threads;

    const int weight_elems = out_channels * in_channels * kernel_size * kernel_size;
    const int shared_bytes = (weight_elems + out_channels) * sizeof(float);

    optimized_conv_min_tanh_forward_kernel<<<blocks, threads, shared_bytes>>>(
        x.data_ptr<float>(),
        conv_weight.data_ptr<float>(),
        conv_bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch,
        in_channels,
        in_height,
        in_width,
        out_channels,
        kernel_size,
        out_height,
        out_width
    );

    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        printf("Error in optimized_conv_min_tanh_forward_kernel: %s\n", cudaGetErrorString(err));
    }
}

at::Tensor forward(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias) {

    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");

    const int batch = x.size(0);
    const int in_height = x.size(2);
    const int in_width = x.size(3);
    const int kernel_size = conv_weight.size(2);
    const int out_height = in_height - kernel_size + 1;
    const int out_width = in_width - kernel_size + 1;

    auto output = at::empty({batch, 1, out_height, out_width}, x.options());
    optimized_conv_min_tanh_forward_cuda(x, conv_weight, conv_bias, output);
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized convolution, min (over channels), and double tanh activation (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.714 inst/cycle 0.000 5
Executed Ipc Elapsed 2.262 inst/cycle 0.000 5
Issue Slots Busy 67.898 % 0.049 5
Issued Ipc Active 2.718 inst/cycle 0.000 5
SM Busy 67.898 % 0.049 5
Memory Throughput 38593876487.540 byte/second 13563329439803782.000 5
Mem Busy 55.394 % 0.029 5
Max Bandwidth 37.222 % 0.013 5
L1/TEX Hit Rate 98.960 % 0.000 5
L2 Hit Rate 56.682 % 0.320 5
Mem Pipes Busy 37.222 % 0.013 5
Warp Cycles Per Issued Instruction 9.086 cycle 0.002 5
Warp Cycles Per Executed Instruction 9.092 cycle 0.002 5
Avg. Active Threads Per Warp 31.880 0.000 5
Avg. Not Predicated Off Threads Per Warp 29.560 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 23.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 38.518 % 0.000 5
Achieved Active Warps Per SM 24.652 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (35.4%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (38.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 603406.55 μs
Device Time 83.62 μs
Self CPU Time 42.58 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 603363.97 μs
Device Time 83.62 μs
Self CPU Time 93.93 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 602895.82 μs
Device Time 0.00 μs
Self CPU Time 115.20 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 602374.15 μs
Device Time 0.00 μs
Self CPU Time 602374.15 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 182529.71 μs
Device Time 533909.15 μs
Self CPU Time 13368.88 μs
Self Device Time 533909.15 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 602878.98 μs
Device Time 624.80 μs
Self CPU Time 602878.98 μs
Self Device Time 624.80 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
optimized_conv_min_tanh_forward_kernel(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 228188.79 μs
Self CPU Time 0.00 μs
Self Device Time 228188.79 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 193494.65 μs
Device Time 533909.15 μs
Self CPU Time 10978.56 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 533986.81 μs
Self CPU Time 0.00 μs
Self Device Time 533986.81 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45301 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:9:5 bugprone-easily-swappable-parameters
9 | const float* __restrict__ x, // Input tensor: [B, C_in, H, W]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 | const float* __restrict__ weight, // Convolution weight: [C_out, C_in, K, K]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 | const float* __restrict__ bias, // Convolution bias: [C_out]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:9:31: note: the first parameter in the range is 'x'
9 | const float* __restrict__ x, // Input tensor: [B, C_in, H, W]
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:11:31: note: the last parameter in the range is 'bias'
11 | const float* __restrict__ bias, // Convolution bias: [C_out]
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:13:5: warning: 2 adjacent parameters of 'optimized_conv_min_tanh_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
13 | const int batch,
| ^~~~~~~~~~~~~~~~
14 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:13:15: note: the first parameter in the range is 'batch'
13 | const int batch,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:14:15: note: the last parameter in the range is 'in_channels'
14 | const int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:16:5: warning: 2 adjacent parameters of 'optimized_conv_min_tanh_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
16 | const int in_width,
| ^~~~~~~~~~~~~~~~~~~
17 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:16:15: note: the first parameter in the range is 'in_width'
16 | const int in_width,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:17:15: note: the last parameter in the range is 'out_channels'
17 | const int out_channels,
| ^~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:18:5: warning: 2 adjacent parameters of 'optimized_conv_min_tanh_forward_kernel' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
18 | const int kernel_size,
| ^~~~~~~~~~~~~~~~~~~~~~
19 | const int out_height,
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:18:15: note: the first parameter in the range is 'kernel_size'
18 | const int kernel_size,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:19:15: note: the last parameter in the range is 'out_height'
19 | const int out_height,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:27:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
27 | int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:28:24: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int blockThreads = blockDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:37:17: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
37 | int index = blockIdx.x * blockDim.x + tid;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:76:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
76 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:77:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
77 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:78:16: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
78 | at::Tensor conv_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:79:16: warning: the parameter 'output' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
79 | at::Tensor output) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:81:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
81 | const int batch = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:82:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
82 | const int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:83:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
83 | const int in_height = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:84:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
84 | const int in_width = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:86:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
86 | const int out_channels = conv_weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:87:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
87 | const int kernel_size = conv_weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:96:30: warning: narrowing conversion from 'unsigned long' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
96 | const int shared_bytes = (weight_elems + out_channels) * sizeof(float);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:120:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
120 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:121:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
121 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:122:16: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
122 | at::Tensor conv_bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:128:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
128 | const int batch = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:129:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
129 | const int in_height = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:130:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
130 | const int in_width = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_25/b9_s0_warp_divergence_optimized_conv/base/base.cu:131:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
131 | const int kernel_size = conv_weight.size(2);
| ^