← Back to Leaderboard

The AI CUDA Engineer 👷

25_Conv2d_Min_Tanh_Tanhconv_min_tanh_optimized_base

Level 2 • Task 25
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_weight: torch.Tensor,
    conv_bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies convolution, minimum operation along channels, and double tanh activation.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
        conv_weight (torch.Tensor): Convolution weight tensor of shape
            (out_channels, in_channels, kernel_size, kernel_size)
        conv_bias (torch.Tensor): Convolution bias tensor of shape (out_channels)

    Returns:
        torch.Tensor: Output tensor after applying convolution, min operation and double tanh,
            with shape (batch_size, 1, height', width') where:
            height' = height - kernel_size + 1
            width' = width - kernel_size + 1
    """
    x = F.conv2d(x, conv_weight, bias=conv_bias)
    x = torch.min(x, dim=1, keepdim=True)[0]
    x = torch.tanh(x)
    x = torch.tanh(x)
    return x


class Model(nn.Module):
    """
    Model that performs a convolution, applies minimum operation, Tanh, and another Tanh.
    """

    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv_weight = conv.weight
        self.conv_bias = nn.Parameter(
            conv.bias + torch.ones_like(conv.bias) * 0.02
        )  # make sure its nonzero

    def forward(self, x, fn=module_fn):
        return fn(x, self.conv_weight, self.conv_bias)


batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3


def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]


def get_init_inputs():
    return [in_channels, out_channels, kernel_size]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a convolution, applies minimum operation, Tanh, and another Tanh.
    """
    def __init__(self, in_channels, out_channels, kernel_size):
        super(Model, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size)
        self.conv.bias = nn.Parameter(self.conv.bias + torch.ones_like(self.conv.bias) * 0.02)

    def forward(self, x):
        x = self.conv(x)
        x = torch.min(x, dim=1, keepdim=True)[0] # Apply minimum operation along the channel dimension
        x = torch.tanh(x)
        x = torch.tanh(x)
        return x

batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3

def get_inputs():
    return [torch.randn(batch_size, in_channels, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size]

Kernel Information

#include <torch/extension.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cmath>
#include <cstdio>

// Optimized CUDA kernel for convolution, min-reduction over channels and double tanh activation.
// This kernel combines the best features from two implementations:
// - Uses __ldg for read-only memory accesses
// - Manually unrolls the inner loops for the common kernel size of 3
// - Applies #pragma unroll for generic kernel sizes to aid compiler optimizations
// - Uses a grid-stride loop to efficiently cover all output pixels

__global__ void conv_min_tanh_forward_kernel_optimized(
    const float* __restrict__ x,      // Input: [B, C_in, H, W]
    const float* __restrict__ weight, // Weight: [C_out, C_in, K, K]
    const float* __restrict__ bias,   // Bias: [C_out]
    float* __restrict__ output,       // Output: [B, 1, H_out, W_out]
    const int batch,
    const int in_channels,
    const int in_height,
    const int in_width,
    const int out_channels,
    const int kernel_size,
    const int out_height,
    const int out_width) {

    int tid = blockIdx.x * blockDim.x + threadIdx.x;
    int num_pixels = batch * out_height * out_width;
    
    // Grid-stride loop to cover all output pixels
    while (tid < num_pixels) {
        // Map tid to (b, out_y, out_x)
        int b = tid / (out_height * out_width);
        int rem = tid % (out_height * out_width);
        int out_y = rem / out_width;
        int out_x = rem % out_width;

        float min_val = 1e20f;

        // Iterate over all output channels
        for (int oc = 0; oc < out_channels; oc++) {
            // Load bias from read-only cache
            float conv_sum = __ldg(&bias[oc]);

            // Process all input channels
            for (int ic = 0; ic < in_channels; ic++) {
                int base_input = b * (in_channels * in_height * in_width) + ic * (in_height * in_width);
                int base_weight = oc * (in_channels * kernel_size * kernel_size) + ic * (kernel_size * kernel_size);

                if (kernel_size == 3) {
                    // Manually unrolled convolution for kernel size 3 to reduce loop overhead
                    int in_y = out_y;
                    int in_x = out_x;
                    conv_sum += __ldg(&x[base_input + (in_y + 0) * in_width + (in_x + 0)]) * __ldg(&weight[base_weight + 0]);
                    conv_sum += __ldg(&x[base_input + (in_y + 0) * in_width + (in_x + 1)]) * __ldg(&weight[base_weight + 1]);
                    conv_sum += __ldg(&x[base_input + (in_y + 0) * in_width + (in_x + 2)]) * __ldg(&weight[base_weight + 2]);
                    conv_sum += __ldg(&x[base_input + (in_y + 1) * in_width + (in_x + 0)]) * __ldg(&weight[base_weight + 3]);
                    conv_sum += __ldg(&x[base_input + (in_y + 1) * in_width + (in_x + 1)]) * __ldg(&weight[base_weight + 4]);
                    conv_sum += __ldg(&x[base_input + (in_y + 1) * in_width + (in_x + 2)]) * __ldg(&weight[base_weight + 5]);
                    conv_sum += __ldg(&x[base_input + (in_y + 2) * in_width + (in_x + 0)]) * __ldg(&weight[base_weight + 6]);
                    conv_sum += __ldg(&x[base_input + (in_y + 2) * in_width + (in_x + 1)]) * __ldg(&weight[base_weight + 7]);
                    conv_sum += __ldg(&x[base_input + (in_y + 2) * in_width + (in_x + 2)]) * __ldg(&weight[base_weight + 8]);
                } else {
                    // Use unrolling hints for generic kernel sizes
                    #pragma unroll
                    for (int ky = 0; ky < kernel_size; ky++) {
                        #pragma unroll
                        for (int kx = 0; kx < kernel_size; kx++) {
                            int in_y = out_y + ky;
                            int in_x = out_x + kx;
                            int x_index = base_input + in_y * in_width + in_x;
                            int w_index = base_weight + ky * kernel_size + kx;
                            conv_sum += __ldg(&x[x_index]) * __ldg(&weight[w_index]);
                        }
                    }
                }
            }
            // Update minimum using fminf to help avoid branch divergence
            min_val = fminf(min_val, conv_sum);
        }

        // Apply double tanh activation
        float activated = tanhf(tanhf(min_val));
        output[tid] = activated;

        tid += blockDim.x * gridDim.x;
    }
}

// Launcher function
void conv_min_tanh_forward_cuda(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias,
    at::Tensor output) {

    const int batch = x.size(0);
    const int in_channels = x.size(1);
    const int in_height = x.size(2);
    const int in_width = x.size(3);

    const int out_channels = conv_weight.size(0);
    const int kernel_size = conv_weight.size(2);  // Assuming square kernel
    const int out_height = in_height - kernel_size + 1;
    const int out_width = in_width - kernel_size + 1;

    int num_pixels = batch * out_height * out_width;
    const int threads = 256;
    const int blocks = (num_pixels + threads - 1) / threads;

    conv_min_tanh_forward_kernel_optimized<<<blocks, threads>>>(
        x.data_ptr<float>(),
        conv_weight.data_ptr<float>(),
        conv_bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch,
        in_channels,
        in_height,
        in_width,
        out_channels,
        kernel_size,
        out_height,
        out_width
    );

    cudaError_t err = cudaGetLastError();
    if (err != cudaSuccess) {
        printf("Error in conv_min_tanh_forward_kernel_optimized: %s\n", cudaGetErrorString(err));
    }
}

// C++ interface (exposed to Python via pybind11)
at::Tensor forward(
    at::Tensor x,
    at::Tensor conv_weight,
    at::Tensor conv_bias) {

    TORCH_CHECK(x.is_cuda(), "x must be a CUDA tensor");
    TORCH_CHECK(conv_weight.is_cuda(), "conv_weight must be a CUDA tensor");
    TORCH_CHECK(conv_bias.is_cuda(), "conv_bias must be a CUDA tensor");

    const int in_height = x.size(2);
    const int in_width = x.size(3);
    const int kernel_size = conv_weight.size(2);
    const int out_height = in_height - kernel_size + 1;
    const int out_width = in_width - kernel_size + 1;
    const int batch = x.size(0);

    // Allocate output tensor with shape [batch, 1, out_height, out_width]
    auto output = at::empty({batch, 1, out_height, out_width}, x.options());
    conv_min_tanh_forward_cuda(x, conv_weight, conv_bias, output);
    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Optimized convolution with min reduction and double tanh activation (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.038 inst/cycle 0.000 5
Executed Ipc Elapsed 1.674 inst/cycle 0.000 5
Issue Slots Busy 51.110 % 0.032 5
Issued Ipc Active 2.044 inst/cycle 0.000 5
SM Busy 51.110 % 0.032 5
Memory Throughput 47013816614.596 byte/second 68910284347919080.000 5
Mem Busy 67.450 % 0.134 5
Max Bandwidth 45.288 % 0.062 5
L1/TEX Hit Rate 99.130 % 0.000 5
L2 Hit Rate 55.564 % 0.043 5
Mem Pipes Busy 45.268 % 0.062 5
Warp Cycles Per Issued Instruction 12.706 cycle 0.001 5
Warp Cycles Per Executed Instruction 12.746 cycle 0.001 5
Avg. Active Threads Per Warp 31.840 0.000 5
Avg. Not Predicated Off Threads Per Warp 31.370 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 40.490 % 0.000 5
Achieved Active Warps Per SM 25.910 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization FMA is the highest-utilized pipeline (21.6%) based on active cycles, taking into account the rates of its different instructions. It executes 32-bit floating point (FADD, FMUL, FMAD, ...) and integer (IMUL, IMAD) operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (40.5%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 269643.11 μs
Device Time 98.33 μs
Self CPU Time 58.65 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 269584.47 μs
Device Time 98.33 μs
Self CPU Time 121.08 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 269123.72 μs
Device Time 0.00 μs
Self CPU Time 114.86 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 266282.76 μs
Device Time 0.00 μs
Self CPU Time 266282.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 150966.52 μs
Device Time 579706.89 μs
Self CPU Time 15680.07 μs
Self Device Time 579706.89 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 601363.69 μs
Device Time 15014.77 μs
Self CPU Time 601363.69 μs
Self Device Time 15014.77 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
conv_min_tanh_forward_kernel_optimized(float const*, float const*, float const*, float*, int, int, int, int, int, int, int, int)
CPU Time 0.00 μs
Device Time 198662.46 μs
Self CPU Time 0.00 μs
Self Device Time 198662.46 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 16030.27 μs
Device Time 30032.32 μs
Self CPU Time 16030.27 μs
Self Device Time 30032.32 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 163301.08 μs
Device Time 579706.89 μs
Self CPU Time 12348.00 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 579706.89 μs
Self CPU Time 0.00 μs
Self Device Time 579706.89 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45298 warnings generated when compiling for host.
Suppressed 45323 warnings (45276 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:16:5 bugprone-easily-swappable-parameters
16 | const float* __restrict__ weight, // Weight: [C_out, C_in, K, K]
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17 | const float* __restrict__ bias, // Bias: [C_out]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:16:31: note: the first parameter in the range is 'weight'
16 | const float* __restrict__ weight, // Weight: [C_out, C_in, K, K]
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:17:31: note: the last parameter in the range is 'bias'
17 | const float* __restrict__ bias, // Bias: [C_out]
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:19:5: warning: 2 adjacent parameters of 'conv_min_tanh_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
19 | const int batch,
| ^~~~~~~~~~~~~~~~
20 | const int in_channels,
| ~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:19:15: note: the first parameter in the range is 'batch'
19 | const int batch,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:20:15: note: the last parameter in the range is 'in_channels'
20 | const int in_channels,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:22:5: warning: 4 adjacent parameters of 'conv_min_tanh_forward_kernel_optimized' of similar type ('const int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
22 | const int in_width,
| ^~~~~~~~~~~~~~~~~~~
23 | const int out_channels,
| ~~~~~~~~~~~~~~~~~~~~~~~
24 | const int kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~
25 | const int out_height,
| ~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:22:15: note: the first parameter in the range is 'in_width'
22 | const int in_width,
| ^~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:25:15: note: the last parameter in the range is 'out_height'
25 | const int out_height,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:28:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
28 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:87:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
87 | tid += blockDim.x * gridDim.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:93:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
93 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:94:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
94 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:95:16: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
95 | at::Tensor conv_bias,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:96:16: warning: the parameter 'output' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
96 | at::Tensor output) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:98:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
98 | const int batch = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:99:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
99 | const int in_channels = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:100:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
100 | const int in_height = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:101:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
101 | const int in_width = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:103:30: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
103 | const int out_channels = conv_weight.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:104:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
104 | const int kernel_size = conv_weight.size(2); // Assuming square kernel
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:135:16: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
135 | at::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:136:16: warning: the parameter 'conv_weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
136 | at::Tensor conv_weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:137:16: warning: the parameter 'conv_bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
137 | at::Tensor conv_bias) {
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:143:27: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
143 | const int in_height = x.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:144:26: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
144 | const int in_width = x.size(3);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:145:29: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
145 | const int kernel_size = conv_weight.size(2);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250208_optimize_b5_s4_e1_sweep/level_2/task_25/b4_s1_conv_min_tanh_optimized/base/base.cu:148:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
148 | const int batch = x.size(0);
| ^