← Back to Leaderboard

The AI CUDA Engineer 👷

29_Matmul_Mish_Mishunrolled_tiled_matmul_mish_base

Level 2 • Task 29
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies linear transformation followed by two Mish activations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor after linear transformation and two Mish activations,
            with shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = F.mish(x)
    x = F.mish(x)
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Mish, and applies Mish again.
    """

    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        linear = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(linear.weight)
        self.bias = nn.Parameter(linear.bias + torch.ones_like(linear.bias) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias)


batch_size = 128
in_features = 10
out_features = 20


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Mish, and applies Mish again.
    """
    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.linear.bias = nn.Parameter(self.linear.bias + torch.ones_like(self.linear.bias) * 0.02)

    def forward(self, x):
        x = self.linear(x)
        x = torch.nn.functional.mish(x)
        x = torch.nn.functional.mish(x)
        return x

batch_size = 128
in_features = 10
out_features = 20

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features]

Kernel Information

Related Kernels (Level 2, Task 29 • 29_Matmul_Mish_Mish)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 29_Matmul_Mish_Mish 0.01 3.65 9.33
🥇 aligned_ldg_29_matmul_mish_mish_base 0.01 3.65 9.33
🥇 optimized_ldg_matmul_mish_base 0.01 3.65 9.33
🥇 stride_loop_optimized_matmul_mish_base 0.01 3.65 9.33
🥇 optimized_tiled_kernel_base 0.01 3.65 9.33
🥇 uniform_control_flow_optimized_matmul_mish_base 0.01 3.65 9.33
🥇 matmul_mish_coalesced_base 0.01 3.65 9.33
🥇 fast_mish_tiled_base 0.01 3.65 9.33
🥇 unrolled_tiled_matmul_mish_base 0.01 3.65 9.33
🥇 matmul_mish_unroll_edit_1 0.01 3.65 9.33
🥇 matmul_mish_aligned_ldg_base 0.01 3.65 9.33
🥇 matmul_mish_aligned_ldg_edit_1 0.01 3.65 9.33
🥇 matmul_mish_coalesced_edit_1 0.01 3.65 9.33
🥇 modular_matmul_mish_base 0.01 3.65 9.33
🥇 strided_thread_parallel_base 0.01 3.65 9.33
🥇 strided_thread_parallel_edit_1 0.01 3.65 9.33
🥇 modular_strided_thread_parallel_base 0.01 3.65 9.33
🥇 warp_reduce_dot_product_base_base 0.01 3.65 9.33
🥇 warp_reduction_dot_base 0.01 3.65 9.33
🥇 tuned_block_size_128_base 0.01 3.65 9.33
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define TILE_DIM 16

// Device function: softplus
__device__ float softplus(float x) {
    float abs_x = fabsf(x);
    float z = expf(-abs_x);
    return fmaxf(x, 0.0f) + log1pf(z);
}

// Device function: mish activation
__device__ float mish(float x) {
    float sp = softplus(x);
    return x * tanhf(sp);
}

__global__ void unrolled_tiled_forward_kernel(
    const float* __restrict__ A,       // x
    const float* __restrict__ weight,  // weight matrix of shape [out_features, in_features]
    const float* __restrict__ bias,    // bias vector of length out_features
    float* __restrict__ output,        // output matrix of shape [batch_size, out_features]
    int batch_size,                    // number of rows in A
    int in_features,                   // common dimension
    int out_features                   // number of rows in weight (i.e. columns in output)
) {
    // Calculate row and column indices for the output matrix
    int row = blockIdx.y * TILE_DIM + threadIdx.y;
    int col = blockIdx.x * TILE_DIM + threadIdx.x;

    float sum = 0.0f;
    
    // Shared memory tiles for A and for B^T (which is weight transposed)
    __shared__ float As[TILE_DIM][TILE_DIM];
    __shared__ float Bs[TILE_DIM][TILE_DIM];

    // Loop over tiles of the input dimension
    int numTiles = (in_features + TILE_DIM - 1) / TILE_DIM;
    for (int t = 0; t < numTiles; t++) {
        // Load tile from A (x): A[row, t*TILE_DIM + threadIdx.x]
        int aCol = t * TILE_DIM + threadIdx.x;
        if (row < batch_size && aCol < in_features) {
            As[threadIdx.y][threadIdx.x] = A[row * in_features + aCol];
        } else {
            As[threadIdx.y][threadIdx.x] = 0.0f;
        }

        // Load tile from B^T. For B^T, the element at (k, col) is weight[col, k] because weight is stored as [out_features, in_features].
        int bRow = t * TILE_DIM + threadIdx.y;
        if (col < out_features && bRow < in_features) {
            Bs[threadIdx.y][threadIdx.x] = weight[col * in_features + bRow];
        } else {
            Bs[threadIdx.y][threadIdx.x] = 0.0f;
        }

        __syncthreads();

        // Accumulate products in the tile
        #pragma unroll
        for (int k = 0; k < TILE_DIM; k++) {
            sum += As[threadIdx.y][k] * Bs[k][threadIdx.x];
        }
        __syncthreads();
    }

    // Write the result with bias and two mish activations
    if (row < batch_size && col < out_features) {
        sum += bias[col];
        float y = mish(sum);
        y = mish(y);
        output[row * out_features + col] = y;
    }
}

// PyTorch binding for the forward operation
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias
) {
    TORCH_CHECK(x.dim() == 2, "x must be 2D");
    TORCH_CHECK(weight.dim() == 2, "weight must be 2D");
    TORCH_CHECK(bias.dim() == 1, "bias must be 1D");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = weight.size(0);

    TORCH_CHECK(weight.size(1) == in_features, "weight shape mismatch");
    TORCH_CHECK(bias.size(0) == out_features, "bias shape mismatch");

    auto output = torch::empty({batch_size, out_features}, x.options());

    // Configure grid and block dimensions for tiling
    dim3 block(TILE_DIM, TILE_DIM);
    dim3 grid((out_features + TILE_DIM - 1) / TILE_DIM, (batch_size + TILE_DIM - 1) / TILE_DIM);

    // Launch the kernel
    unrolled_tiled_forward_kernel<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_features,
        out_features
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Unrolled Tiled Matmul with double Mish activation (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 0.606 inst/cycle 0.001 5
Executed Ipc Elapsed 0.030 inst/cycle 0.000 5
Issue Slots Busy 15.540 % 0.368 5
Issued Ipc Active 0.620 inst/cycle 0.001 5
SM Busy 15.540 % 0.368 5
Memory Throughput 3064683195.594 byte/second 585460920262736.250 5
Mem Busy 8.312 % 0.005 5
Max Bandwidth 4.374 % 0.000 5
L1/TEX Hit Rate 52.114 % 0.078 5
L2 Hit Rate 102.098 % 0.011 5
Mem Pipes Busy 0.448 % 0.000 5
Warp Cycles Per Issued Instruction 12.952 cycle 1.033 5
Warp Cycles Per Executed Instruction 13.258 cycle 1.079 5
Avg. Active Threads Per Warp 24.130 0.000 5
Avg. Not Predicated Off Threads Per Warp 23.320 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 21.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 12.402 % 0.000 5
Achieved Active Warps Per SM 7.940 warp 0.000 5
Analysis Rules
Rule Description
WRN HighPipeUtilization All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 24.1 threads being active per cycle. This is further reduced to 23.3 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (12.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 433157.17 μs
Device Time 5.44 μs
Self CPU Time 70.67 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 433086.50 μs
Device Time 5.44 μs
Self CPU Time 125.10 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 432789.58 μs
Device Time 0.00 μs
Self CPU Time 121.73 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 432483.01 μs
Device Time 0.00 μs
Self CPU Time 432483.01 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 46942.35 μs
Device Time 508868.87 μs
Self CPU Time 14132.86 μs
Self Device Time 508868.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 372107.65 μs
Device Time 49460.32 μs
Self CPU Time 372107.65 μs
Self Device Time 49460.32 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
unrolled_tiled_forward_kernel(float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 23040.55 μs
Self CPU Time 0.00 μs
Self Device Time 23040.55 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 58045.90 μs
Device Time 508868.87 μs
Self CPU Time 11114.93 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 508947.65 μs
Self CPU Time 0.00 μs
Self Device Time 508947.65 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45302 warnings generated when compiling for host.
Suppressed 45338 warnings (45291 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:22:5 bugprone-easily-swappable-parameters
22 | const float* __restrict__ A, // x
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 | const float* __restrict__ weight, // weight matrix of shape [out_features, in_features]
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 | const float* __restrict__ bias, // bias vector of length out_features
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:22:31: note: the first parameter in the range is 'A'
22 | const float* __restrict__ A, // x
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:24:31: note: the last parameter in the range is 'bias'
24 | const float* __restrict__ bias, // bias vector of length out_features
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:31:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int row = blockIdx.y * TILE_DIM + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:32:15: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
32 | int col = blockIdx.x * TILE_DIM + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:44:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
44 | int aCol = t * TILE_DIM + threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:52:20: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
52 | int bRow = t * TILE_DIM + threadIdx.y;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:80:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
80 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:81:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
81 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:82:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
82 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:88:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
88 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:89:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
89 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_29/b10_s3_unrolled_tiled_matmul_mish/base/base.cu:90:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
90 | int out_features = weight.size(0);
| ^