← Back to Leaderboard

The AI CUDA Engineer 👷

29_Matmul_Mish_Mishwarp_reduction_dot_base

Level 2 • Task 29
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: torch.Tensor,
) -> torch.Tensor:
    """
    Applies linear transformation followed by two Mish activations.

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_features)
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features)
        bias (torch.Tensor): Bias vector of shape (out_features)

    Returns:
        torch.Tensor: Output tensor after linear transformation and two Mish activations,
            with shape (batch_size, out_features)
    """
    x = F.linear(x, weight, bias)
    x = F.mish(x)
    x = F.mish(x)
    return x


class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Mish, and applies Mish again.
    """

    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        linear = nn.Linear(in_features, out_features)
        self.weight = nn.Parameter(linear.weight)
        self.bias = nn.Parameter(linear.bias + torch.ones_like(linear.bias) * 0.02)

    def forward(self, x, fn=module_fn):
        return fn(x, self.weight, self.bias)


batch_size = 128
in_features = 10
out_features = 20


def get_inputs():
    return [torch.randn(batch_size, in_features)]


def get_init_inputs():
    return [in_features, out_features]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Simple model that performs a matrix multiplication, applies Mish, and applies Mish again.
    """
    def __init__(self, in_features, out_features):
        super(Model, self).__init__()
        self.linear = nn.Linear(in_features, out_features)
        self.linear.bias = nn.Parameter(self.linear.bias + torch.ones_like(self.linear.bias) * 0.02)

    def forward(self, x):
        x = self.linear(x)
        x = torch.nn.functional.mish(x)
        x = torch.nn.functional.mish(x)
        return x

batch_size = 128
in_features = 10
out_features = 20

def get_inputs():
    return [torch.randn(batch_size, in_features)]

def get_init_inputs():
    return [in_features, out_features]

Kernel Information

Related Kernels (Level 2, Task 29 • 29_Matmul_Mish_Mish)

Rank Kernel Name Runtime (ms) Speedup Native Speedup Compile
🥇 29_Matmul_Mish_Mish 0.01 3.65 9.33
🥇 aligned_ldg_29_matmul_mish_mish_base 0.01 3.65 9.33
🥇 optimized_ldg_matmul_mish_base 0.01 3.65 9.33
🥇 stride_loop_optimized_matmul_mish_base 0.01 3.65 9.33
🥇 optimized_tiled_kernel_base 0.01 3.65 9.33
🥇 uniform_control_flow_optimized_matmul_mish_base 0.01 3.65 9.33
🥇 matmul_mish_coalesced_base 0.01 3.65 9.33
🥇 fast_mish_tiled_base 0.01 3.65 9.33
🥇 unrolled_tiled_matmul_mish_base 0.01 3.65 9.33
🥇 matmul_mish_unroll_edit_1 0.01 3.65 9.33
🥇 matmul_mish_aligned_ldg_base 0.01 3.65 9.33
🥇 matmul_mish_aligned_ldg_edit_1 0.01 3.65 9.33
🥇 matmul_mish_coalesced_edit_1 0.01 3.65 9.33
🥇 modular_matmul_mish_base 0.01 3.65 9.33
🥇 strided_thread_parallel_base 0.01 3.65 9.33
🥇 strided_thread_parallel_edit_1 0.01 3.65 9.33
🥇 modular_strided_thread_parallel_base 0.01 3.65 9.33
🥇 warp_reduce_dot_product_base_base 0.01 3.65 9.33
🥇 warp_reduction_dot_base 0.01 3.65 9.33
🥇 tuned_block_size_128_base 0.01 3.65 9.33
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>

// Device function: Softplus
__device__ float softplus(float x) {
    float abs_x = fabsf(x);
    return log1pf(expf(-abs_x)) + fmaxf(x, 0.0f);
}

// Device function: Mish activation
__device__ float mish(float x) {
    float sp = softplus(x);
    return x * tanhf(sp);
}

// Optimized kernel: each warp computes one output element's dot product using warp-level reduction
__global__ void forward_kernel_optimized(
    const float* __restrict__ x,
    const float* __restrict__ weight,
    const float* __restrict__ bias,
    float* __restrict__ output,
    int batch_size,
    int in_features,
    int out_features
) {
    // Each warp computes one output element
    const int warpSize = 32;
    int global_warp_id = (blockIdx.x * (blockDim.x / warpSize)) + (threadIdx.x / warpSize);
    int total_outputs = batch_size * out_features;
    if (global_warp_id >= total_outputs) return;

    int lane = threadIdx.x % warpSize;
    int i = global_warp_id / out_features;  // Batch index
    int j = global_warp_id % out_features;  // Output feature index

    float sum = 0.0f;
    // Each thread in the warp computes a partial sum over the in_features dimension
    for (int k = lane; k < in_features; k += warpSize) {
        float a = x[i * in_features + k];
        float b = weight[j * in_features + k];
        sum += a * b;
    }

    // Use warp-level reduction using __shfl_down_sync
    unsigned int mask = 0xffffffff;
    for (int offset = warpSize / 2; offset > 0; offset /= 2) {
        sum += __shfl_down_sync(mask, sum, offset);
    }

    // The first lane in the warp finalizes the result
    if (lane == 0) {
        sum += bias[j];
        float y = mish(sum);
        output[global_warp_id] = mish(y);
    }
}

// Host function to launch the optimized kernel
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor weight,
    torch::Tensor bias
) {
    TORCH_CHECK(x.dim() == 2, "x must be 2D");
    TORCH_CHECK(weight.dim() == 2, "weight must be 2D");
    TORCH_CHECK(bias.dim() == 1, "bias must be 1D");

    int batch_size = x.size(0);
    int in_features = x.size(1);
    int out_features = weight.size(0);

    TORCH_CHECK(weight.size(1) == in_features, "weight shape mismatch");
    TORCH_CHECK(bias.size(0) == out_features, "bias shape mismatch");

    auto output = torch::empty({batch_size, out_features}, x.options());

    // Determine grid and block dimensions using warp-based mapping
    const int threads_per_block = 128; // 128 threads = 4 warps per block
    int warps_per_block = threads_per_block / 32;
    int total_warps = batch_size * out_features;
    int grid_size = (total_warps + warps_per_block - 1) / warps_per_block;

    forward_kernel_optimized<<<grid_size, threads_per_block, 0, at::cuda::getCurrentCUDAStream()>>>(
        x.data_ptr<float>(),
        weight.data_ptr<float>(),
        bias.data_ptr<float>(),
        output.data_ptr<float>(),
        batch_size,
        in_features,
        out_features
    );

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Warp-level reduction Linear double Mish forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 1.180 inst/cycle 0.000 5
Executed Ipc Elapsed 0.548 inst/cycle 0.000 5
Issue Slots Busy 29.990 % 0.102 5
Issued Ipc Active 1.200 inst/cycle 0.000 5
SM Busy 29.990 % 0.102 5
Memory Throughput 3258435177.308 byte/second 5126556049131483.000 5
Mem Busy 8.326 % 0.002 5
Max Bandwidth 4.790 % 0.003 5
L1/TEX Hit Rate 67.126 % 0.006 5
L2 Hit Rate 102.468 % 0.056 5
Mem Pipes Busy 6.520 % 0.003 5
Warp Cycles Per Issued Instruction 15.444 cycle 0.186 5
Warp Cycles Per Executed Instruction 15.688 cycle 0.190 5
Avg. Active Threads Per Warp 11.920 0.000 5
Avg. Not Predicated Off Threads Per Warp 10.740 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 16.000 block 0.000 5
Block Limit Shared Mem 32.000 block 0.000 5
Block Limit Warps 16.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 28.640 % 0.035 5
Achieved Active Warps Per SM 18.330 warp 0.013 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (21.1%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 11.9 threads being active per cycle. This is further reduced to 10.7 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (28.7%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
Operation / Metric Value Unit
aten::to
CPU Time 271292.92 μs
Device Time 3.78 μs
Self CPU Time 57.02 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 271235.90 μs
Device Time 3.78 μs
Self CPU Time 85.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 271033.25 μs
Device Time 0.00 μs
Self CPU Time 96.69 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 270769.36 μs
Device Time 0.00 μs
Self CPU Time 270769.36 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::fill_
CPU Time 48364.36 μs
Device Time 621731.48 μs
Self CPU Time 15791.09 μs
Self Device Time 621731.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 442431.05 μs
Device Time 16120.57 μs
Self CPU Time 442431.05 μs
Self Device Time 16120.57 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
forward_kernel_optimized(float const*, float const*, float const*, float*, int, int, int)
CPU Time 0.00 μs
Device Time 22775.76 μs
Self CPU Time 0.00 μs
Self Device Time 22775.76 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaEventRecord
CPU Time 17221.39 μs
Device Time 32401.09 μs
Self CPU Time 17221.39 μs
Self Device Time 32401.09 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::zero_
CPU Time 62162.41 μs
Device Time 621731.48 μs
Self CPU Time 13810.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void at::native::vectorized_elementwise_kernel<4, at::native::FillFunctor<int>, at::detail::Array<char*, 1> >(int, at::native::FillFunctor<int>, at::detail::Array<char*, 1>)
CPU Time 0.00 μs
Device Time 621731.48 μs
Self CPU Time 0.00 μs
Self Device Time 621731.48 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45301 warnings generated when compiling for host.
Suppressed 45338 warnings (45291 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:21:5 bugprone-easily-swappable-parameters
21 | const float* __restrict__ x,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
22 | const float* __restrict__ weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 | const float* __restrict__ bias,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:21:31: note: the first parameter in the range is 'x'
21 | const float* __restrict__ x,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:23:31: note: the last parameter in the range is 'bias'
23 | const float* __restrict__ bias,
| ^~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:25:5: warning: 2 adjacent parameters of 'forward_kernel_optimized' of similar type ('int') are easily swapped by mistake [bugprone-easily-swappable-parameters]
25 | int batch_size,
| ^~~~~~~~~~~~~~~
26 | int in_features,
| ~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:25:9: note: the first parameter in the range is 'batch_size'
25 | int batch_size,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:26:9: note: the last parameter in the range is 'in_features'
26 | int in_features,
| ^~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:31:26: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | int global_warp_id = (blockIdx.x * (blockDim.x / warpSize)) + (threadIdx.x / warpSize);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:35:16: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
35 | int lane = threadIdx.x % warpSize;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:63:19: warning: the parameter 'x' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
63 | torch::Tensor x,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:64:19: warning: the parameter 'weight' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
64 | torch::Tensor weight,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:65:19: warning: the parameter 'bias' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
65 | torch::Tensor bias
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:71:22: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
71 | int batch_size = x.size(0);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:72:23: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
72 | int in_features = x.size(1);
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250212_optimize_b5_s4_e1_v2/level_2/task_29/b5_s1_warp_reduction_dot/base/base.cu:73:24: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
73 | int out_features = weight.size(0);
| ^