← Back to Leaderboard

The AI CUDA Engineer 👷

3_ConvTranspose3d_Sum_LayerNorm_AvgPool_GELUminimized_divergence_norm_base

Level 2 • Task 3
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_transpose_weight: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    sum_weight: torch.Tensor,
    norm_weight: torch.Tensor,
    norm_bias: torch.Tensor,
    stride: tuple,
    padding: tuple,
    output_padding: tuple,
    pool_kernel_size: tuple,
    norm_shape: tuple,
) -> torch.Tensor:
    """
    Functional implementation of a sequence of operations:
    1. 3D transposed convolution
    2. Addition with a learnable weight
    3. Layer normalization
    4. 3D average pooling
    5. GELU activation

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        conv_transpose_weight (torch.Tensor): Weight tensor for transposed convolution
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        sum_weight (torch.Tensor): Learnable weight for addition
        norm_weight (torch.Tensor): Weight tensor for layer normalization
        norm_bias (torch.Tensor): Bias tensor for layer normalization
        stride (tuple): Stride for transposed convolution, as (depth_stride, height_stride, width_stride)
        padding (tuple): Padding for transposed convolution, as (depth_pad, height_pad, width_pad)
        output_padding (tuple): Output padding for transposed convolution, as (depth_pad, height_pad, width_pad)
        pool_kernel_size (tuple): Kernel size for average pooling, as (depth_kernel, height_kernel, width_kernel)
        norm_shape (tuple): Shape for layer normalization

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    x = F.conv_transpose3d(
        x,
        conv_transpose_weight,
        bias=conv_transpose_bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
    )
    x = x + sum_weight
    x = F.layer_norm(x, norm_shape, norm_weight, norm_bias)
    x = F.avg_pool3d(x, kernel_size=pool_kernel_size)
    x = F.gelu(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, followed by a sum, layer normalization, average pooling, and GELU activation.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        sum_weight,
        norm_shape,
        pool_kernel_size,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
        )
        self.conv_transpose_weight = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)
        self.sum_weight = nn.Parameter(torch.tensor(sum_weight))
        norm = nn.LayerNorm(norm_shape)
        self.norm_weight = nn.Parameter(norm.weight + torch.randn(norm_shape) * 0.02)
        self.norm_bias = nn.Parameter(norm.bias + torch.randn(norm_shape) * 0.02)

    def forward(
        self,
        x,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        norm_shape,
        fn=module_fn,
    ):
        return fn(
            x,
            self.conv_transpose_weight,
            self.conv_transpose_bias,
            self.sum_weight,
            self.norm_weight,
            self.norm_bias,
            stride,
            padding,
            output_padding,
            pool_kernel_size,
            norm_shape,
        )


batch_size = 128
in_channels = 32
out_channels = 64
depth, height, width = 16, 32, 32
kernel_size = (3, 3, 3)
stride = (2, 2, 2)
padding = (1, 1, 1)
output_padding = (1, 1, 1)
sum_weight = 1.0
norm_shape = (out_channels,)
pool_kernel_size = (2, 2, 2)


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        norm_shape,
    ]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        sum_weight,
        norm_shape,
        pool_kernel_size,
    ]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, followed by a sum, layer normalization, average pooling, and GELU activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, sum_weight, norm_shape, pool_kernel_size):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
        self.sum_weight = nn.Parameter(torch.tensor(sum_weight))
        self.norm = nn.LayerNorm(norm_shape)
        self.norm.weight = nn.Parameter(self.norm.weight + torch.randn(norm_shape)*0.02)
        self.norm.bias = nn.Parameter(self.norm.bias + torch.randn(norm_shape)*0.02)
        self.avg_pool = nn.AvgPool3d(kernel_size=pool_kernel_size)
        self.gelu = nn.GELU()

    def forward(self, x):
        x = self.conv_transpose(x)
        x = x + self.sum_weight
        x = self.norm(x)
        x = self.avg_pool(x)
        x = self.gelu(x)
        return x

batch_size = 128
in_channels = 32
out_channels = 64
depth, height, width = 16, 32, 32
kernel_size = (3, 3, 3)
stride = (2, 2, 2)
padding = (1, 1, 1)
output_padding = (1, 1, 1)
sum_weight = 1.0
norm_shape = (out_channels,)
pool_kernel_size = (2, 2, 2)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, output_padding, sum_weight, norm_shape, pool_kernel_size]

Kernel Information

Related Kernels (Level 2, Task 3 • 3_ConvTranspose3d_Sum_LayerNorm_AvgPool_GELU)

#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda_runtime.h>
#include <vector>

#define BLOCK_SIZE 256
#define WARP_SIZE 32

// This kernel minimizes warp divergence by avoiding divergent branching when computing
// the sum and sum of squares, and by incorporating logical restructuring to promote uniform
// control flow.

template <typename T>
__global__ void minimized_divergence_layernorm_kernel(
    const T* __restrict__ input,
    const T* __restrict__ gamma,
    const T* __restrict__ beta,
    T* __restrict__ output,
    int n1,
    int n2
) {
    __shared__ float s_mean;
    __shared__ float s_variance;
    if (threadIdx.x == 0) {
        s_mean = 0.0f;
        s_variance = 0.0f;
    }
    __syncthreads();

    const int tid = threadIdx.x;
    const int bid = blockIdx.x;
    const int offset = bid * n2;

    float local_sum = 0.0f;
    float local_sq_sum = 0.0f;

    // Restructure logic to avoid warp divergence
    for (int i = tid; i < n2; i += BLOCK_SIZE) {
        float val = __ldg(&input[offset + i]);
        local_sum += val;
        local_sq_sum += val * val;
    }

    // Warp-level reduction using shuffle to minimize divergence
    float warp_sum = local_sum;
    float warp_sq_sum = local_sq_sum;
    #pragma unroll
    for (int offset_w = WARP_SIZE/2; offset_w > 0; offset_w /= 2) {
        warp_sum += __shfl_down_sync(0xffffffff, warp_sum, offset_w);
        warp_sq_sum += __shfl_down_sync(0xffffffff, warp_sq_sum, offset_w);
    }

    // Atomic add to shared memory is performed only by warp leaders to reduce sync overhead
    if ((tid % WARP_SIZE) == 0) {
        atomicAdd(&s_mean, warp_sum);
        atomicAdd(&s_variance, warp_sq_sum);
    }
    __syncthreads();

    // Normalize
    float mean = s_mean / n2;
    float variance = s_variance / n2 - mean * mean;
    float inv_std = rsqrtf(variance + 1e-5f);

    for (int i = tid; i < n2; i += BLOCK_SIZE) {
        int idx = offset + i;
        float normalized = (input[idx] - mean) * inv_std;
        output[idx] = gamma[i] * normalized + beta[i];
    }
}

// Kernel will be invoked within the forward function.
torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_transpose_weight,
    torch::Tensor conv_transpose_bias,
    torch::Tensor sum_weight,
    torch::Tensor norm_weight,
    torch::Tensor norm_bias,
    std::vector<int64_t> stride,
    std::vector<int64_t> padding,
    std::vector<int64_t> output_padding,
    std::vector<int64_t> pool_kernel_size,
    std::vector<int64_t> norm_shape
) {
    // Ensure inputs are contiguous
    x = x.contiguous();
    conv_transpose_weight = conv_transpose_weight.contiguous();
    sum_weight = sum_weight.contiguous();
    norm_weight = norm_weight.contiguous();
    norm_bias = norm_bias.contiguous();

    at::IntArrayRef strideRef(stride);
    at::IntArrayRef paddingRef(padding);
    at::IntArrayRef outputPaddingRef(output_padding);
    at::IntArrayRef poolKernelRef(pool_kernel_size);

    // 1. 3D transposed convolution
    auto out = at::conv_transpose3d(
        x,
        conv_transpose_weight,
        conv_transpose_bias,
        strideRef,
        paddingRef,
        outputPaddingRef,
        /*groups=*/1,
        /*dilation=*/1
    );

    // 2. Elementwise addition with sum_weight
    out.add_(sum_weight);

    // 3. Custom fused layer normalization with minimized divergence
    auto out_size = out.sizes();
    int64_t n1 = 1;
    for (int i = 0; i < out.dim() - norm_shape.size(); ++i) {
        n1 *= out_size[i];
    }
    int64_t n2 = 1;
    for (size_t i = 0; i < norm_shape.size(); ++i) {
        n2 *= norm_shape[i];
    }

    auto output = torch::empty_like(out);
    dim3 grid(n1);
    dim3 block(BLOCK_SIZE);

    minimized_divergence_layernorm_kernel<float><<<grid, block>>>(
        out.data_ptr<float>(),
        norm_weight.data_ptr<float>(),
        norm_bias.data_ptr<float>(),
        output.data_ptr<float>(),
        n1,
        n2
    );
    cudaDeviceSynchronize();

    // 4. Average pooling
    output = at::avg_pool3d(
        output,
        poolKernelRef,          // kernel_size
        poolKernelRef,          // stride (same as kernel_size)
        /*padding=*/{0,0,0},
        /*ceil_mode=*/false,
        /*count_include_pad=*/true
    );

    // 5. GELU activation
    output = at::gelu(output);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Fused minimized divergence layer norm forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.750 inst/cycle 0.000 5
Executed Ipc Elapsed 2.740 inst/cycle 0.000 5
Issue Slots Busy 68.678 % 0.000 5
Issued Ipc Active 2.750 inst/cycle 0.000 5
SM Busy 68.678 % 0.000 5
Memory Throughput 402647221974.598 byte/second 734357138179505.250 5
Mem Busy 71.352 % 0.000 5
Max Bandwidth 61.300 % 0.000 5
L1/TEX Hit Rate 59.960 % 0.000 5
L2 Hit Rate 50.042 % 0.000 5
Mem Pipes Busy 61.300 % 0.000 5
Warp Cycles Per Issued Instruction 18.890 cycle 0.000 5
Warp Cycles Per Executed Instruction 18.890 cycle 0.000 5
Avg. Active Threads Per Warp 25.740 0.000 5
Avg. Not Predicated Off Threads Per Warp 22.750 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 8.000 block 0.000 5
Block Limit Shared Mem 28.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 64.000 warp 0.000 5
Theoretical Occupancy 100.000 % 0.000 5
Achieved Occupancy 81.970 % 0.000 5
Achieved Active Warps Per SM 52.460 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (37.3%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 25.7 threads being active per cycle. This is further reduced to 22.7 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (82.0%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::to
CPU Time 508818.22 μs
Device Time 27310.94 μs
Self CPU Time 77.60 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_to_copy
CPU Time 508740.63 μs
Device Time 27310.94 μs
Self CPU Time 129.55 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::empty_strided
CPU Time 481847.78 μs
Device Time 0.00 μs
Self CPU Time 1074.86 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceGetStreamPriorityRange
CPU Time 479558.76 μs
Device Time 0.00 μs
Self CPU Time 479558.76 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::conv_transpose3d
CPU Time 135457.88 μs
Device Time 2654733.78 μs
Self CPU Time 742.88 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 134715.00 μs
Device Time 2654733.78 μs
Self CPU Time 957.94 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 133757.06 μs
Device Time 2654733.78 μs
Self CPU Time 1837.48 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::add_
CPU Time 19900.79 μs
Device Time 2001176.83 μs
Self CPU Time 3489.21 μs
Self Device Time 2001176.83 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 9992652.89 μs
Device Time 39687.33 μs
Self CPU Time 9992652.89 μs
Self Device Time 39687.33 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void minimized_divergence_layernorm_kernel<float>(float const*, float const*, float const*, float*, int, int)
CPU Time 0.00 μs
Device Time 5495589.55 μs
Self CPU Time 0.00 μs
Self Device Time 5495589.55 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45331 warnings (45284 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:15:5 bugprone-easily-swappable-parameters
15 | const T* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 | const T* __restrict__ gamma,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:15:27: note: the first parameter in the range is 'input'
15 | const T* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:16:27: note: the last parameter in the range is 'gamma'
16 | const T* __restrict__ gamma,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:30:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
30 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:31:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
31 | const int bid = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:61:27: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
61 | float mean = s_mean / n2;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:62:35: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
62 | float variance = s_variance / n2 - mean * mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:76:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
76 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
77 | torch::Tensor sum_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:76:19: note: the first parameter in the range is 'conv_transpose_bias'
76 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:77:19: note: the last parameter in the range is 'sum_weight'
77 | torch::Tensor sum_weight,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:80:5: warning: 5 adjacent parameters of 'forward' of similar type ('std::vector<int64_t>') are easily swapped by mistake [bugprone-easily-swappable-parameters]
80 | std::vector<int64_t> stride,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
81 | std::vector<int64_t> padding,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
82 | std::vector<int64_t> output_padding,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
83 | std::vector<int64_t> pool_kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 | std::vector<int64_t> norm_shape
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:80:26: note: the first parameter in the range is 'stride'
80 | std::vector<int64_t> stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:84:26: note: the last parameter in the range is 'norm_shape'
84 | std::vector<int64_t> norm_shape
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:80:26: warning: the parameter 'stride' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
80 | std::vector<int64_t> stride,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:81:26: warning: the parameter 'padding' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
81 | std::vector<int64_t> padding,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:82:26: warning: the parameter 'output_padding' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
82 | std::vector<int64_t> output_padding,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:83:26: warning: the parameter 'pool_kernel_size' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
83 | std::vector<int64_t> pool_kernel_size,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:133:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
133 | n1,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b6_s1_minimized_divergence_norm/base/base.cu:134:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
134 | n2
| ^