← Back to Leaderboard

The AI CUDA Engineer 👷

3_ConvTranspose3d_Sum_LayerNorm_AvgPool_GELUselective_atomic_norm_base_base

Level 2 • Task 3
import torch
import torch.nn as nn
import torch.nn.functional as F


def module_fn(
    x: torch.Tensor,
    conv_transpose_weight: torch.Tensor,
    conv_transpose_bias: torch.Tensor,
    sum_weight: torch.Tensor,
    norm_weight: torch.Tensor,
    norm_bias: torch.Tensor,
    stride: tuple,
    padding: tuple,
    output_padding: tuple,
    pool_kernel_size: tuple,
    norm_shape: tuple,
) -> torch.Tensor:
    """
    Functional implementation of a sequence of operations:
    1. 3D transposed convolution
    2. Addition with a learnable weight
    3. Layer normalization
    4. 3D average pooling
    5. GELU activation

    Args:
        x (torch.Tensor): Input tensor of shape (batch_size, in_channels, depth, height, width)
        conv_transpose_weight (torch.Tensor): Weight tensor for transposed convolution
        conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
        sum_weight (torch.Tensor): Learnable weight for addition
        norm_weight (torch.Tensor): Weight tensor for layer normalization
        norm_bias (torch.Tensor): Bias tensor for layer normalization
        stride (tuple): Stride for transposed convolution, as (depth_stride, height_stride, width_stride)
        padding (tuple): Padding for transposed convolution, as (depth_pad, height_pad, width_pad)
        output_padding (tuple): Output padding for transposed convolution, as (depth_pad, height_pad, width_pad)
        pool_kernel_size (tuple): Kernel size for average pooling, as (depth_kernel, height_kernel, width_kernel)
        norm_shape (tuple): Shape for layer normalization

    Returns:
        torch.Tensor: Output tensor after applying all operations
    """
    x = F.conv_transpose3d(
        x,
        conv_transpose_weight,
        bias=conv_transpose_bias,
        stride=stride,
        padding=padding,
        output_padding=output_padding,
    )
    x = x + sum_weight
    x = F.layer_norm(x, norm_shape, norm_weight, norm_bias)
    x = F.avg_pool3d(x, kernel_size=pool_kernel_size)
    x = F.gelu(x)
    return x


class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, followed by a sum, layer normalization, average pooling, and GELU activation.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        sum_weight,
        norm_shape,
        pool_kernel_size,
    ):
        super(Model, self).__init__()
        conv = nn.ConvTranspose3d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            output_padding=output_padding,
        )
        self.conv_transpose_weight = nn.Parameter(conv.weight)
        self.conv_transpose_bias = nn.Parameter(conv.bias)
        self.sum_weight = nn.Parameter(torch.tensor(sum_weight))
        norm = nn.LayerNorm(norm_shape)
        self.norm_weight = nn.Parameter(norm.weight + torch.randn(norm_shape) * 0.02)
        self.norm_bias = nn.Parameter(norm.bias + torch.randn(norm_shape) * 0.02)

    def forward(
        self,
        x,
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        norm_shape,
        fn=module_fn,
    ):
        return fn(
            x,
            self.conv_transpose_weight,
            self.conv_transpose_bias,
            self.sum_weight,
            self.norm_weight,
            self.norm_bias,
            stride,
            padding,
            output_padding,
            pool_kernel_size,
            norm_shape,
        )


batch_size = 128
in_channels = 32
out_channels = 64
depth, height, width = 16, 32, 32
kernel_size = (3, 3, 3)
stride = (2, 2, 2)
padding = (1, 1, 1)
output_padding = (1, 1, 1)
sum_weight = 1.0
norm_shape = (out_channels,)
pool_kernel_size = (2, 2, 2)


def get_inputs():
    return [
        torch.randn(batch_size, in_channels, depth, height, width),
        stride,
        padding,
        output_padding,
        pool_kernel_size,
        norm_shape,
    ]


def get_init_inputs():
    return [
        in_channels,
        out_channels,
        kernel_size,
        stride,
        padding,
        output_padding,
        sum_weight,
        norm_shape,
        pool_kernel_size,
    ]
import torch
import torch.nn as nn

class Model(nn.Module):
    """
    Model that performs a 3D transposed convolution, followed by a sum, layer normalization, average pooling, and GELU activation.
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, sum_weight, norm_shape, pool_kernel_size):
        super(Model, self).__init__()
        self.conv_transpose = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
        self.sum_weight = nn.Parameter(torch.tensor(sum_weight))
        self.norm = nn.LayerNorm(norm_shape)
        self.norm.weight = nn.Parameter(self.norm.weight + torch.randn(norm_shape)*0.02)
        self.norm.bias = nn.Parameter(self.norm.bias + torch.randn(norm_shape)*0.02)
        self.avg_pool = nn.AvgPool3d(kernel_size=pool_kernel_size)
        self.gelu = nn.GELU()

    def forward(self, x):
        x = self.conv_transpose(x)
        x = x + self.sum_weight
        x = self.norm(x)
        x = self.avg_pool(x)
        x = self.gelu(x)
        return x

batch_size = 128
in_channels = 32
out_channels = 64
depth, height, width = 16, 32, 32
kernel_size = (3, 3, 3)
stride = (2, 2, 2)
padding = (1, 1, 1)
output_padding = (1, 1, 1)
sum_weight = 1.0
norm_shape = (out_channels,)
pool_kernel_size = (2, 2, 2)

def get_inputs():
    return [torch.randn(batch_size, in_channels, depth, height, width)]

def get_init_inputs():
    return [in_channels, out_channels, kernel_size, stride, padding, output_padding, sum_weight, norm_shape, pool_kernel_size]

Kernel Information

Related Kernels (Level 2, Task 3 • 3_ConvTranspose3d_Sum_LayerNorm_AvgPool_GELU)

#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda_runtime.h>
#include <vector>

#define BLOCK_SIZE 256
#define WARP_SIZE 32
#define WARPS_PER_BLOCK (BLOCK_SIZE/WARP_SIZE)

template <typename T>
__global__ void selective_atomic_layernorm_kernel(
    const T* __restrict__ input,
    const T* __restrict__ gamma,
    const T* __restrict__ beta,
    T* __restrict__ output,
    int n1,
    int n2
) {
    __shared__ float s_partial_sums[WARPS_PER_BLOCK];
    __shared__ float s_partial_squares[WARPS_PER_BLOCK];
    __shared__ float s_mean, s_variance;

    const int tid = threadIdx.x;
    const int wid = tid / WARP_SIZE;
    const int lane = tid % WARP_SIZE;
    const int bid = blockIdx.x;
    const int offset = bid * n2;

    // Initialize shared memory
    if (tid < WARPS_PER_BLOCK) {
        s_partial_sums[tid] = 0.0f;
        s_partial_squares[tid] = 0.0f;
    }
    if (tid == 0) {
        s_mean = 0.0f;
        s_variance = 0.0f;
    }
    __syncthreads();

    // Phase 1: Warp-level reduction without atomics
    float local_sum = 0.0f;
    float local_sq_sum = 0.0f;

    // Use vectorized loads where possible
    if (n2 >= 4) {
        const float4* input4 = reinterpret_cast<const float4*>(input + offset);
        for (int i = tid; i < n2/4; i += BLOCK_SIZE) {
            float4 vals = input4[i];
            local_sum += vals.x + vals.y + vals.z + vals.w;
            local_sq_sum += vals.x * vals.x + vals.y * vals.y + 
                           vals.z * vals.z + vals.w * vals.w;
        }
        
        // Handle remaining elements
        for (int i = (n2/4)*4 + tid; i < n2; i += BLOCK_SIZE) {
            float val = input[offset + i];
            local_sum += val;
            local_sq_sum += val * val;
        }
    } else {
        for (int i = tid; i < n2; i += BLOCK_SIZE) {
            float val = input[offset + i];
            local_sum += val;
            local_sq_sum += val * val;
        }
    }

    // Warp-level reduction using shuffle
    #pragma unroll
    for (int offset = WARP_SIZE/2; offset > 0; offset >>= 1) {
        local_sum += __shfl_down_sync(0xffffffff, local_sum, offset);
        local_sq_sum += __shfl_down_sync(0xffffffff, local_sq_sum, offset);
    }

    // First thread in each warp writes to shared memory
    if (lane == 0) {
        s_partial_sums[wid] = local_sum;
        s_partial_squares[wid] = local_sq_sum;
    }
    __syncthreads();

    // Phase 2: Final reduction using minimal atomics
    if (tid == 0) {
        float final_sum = 0.0f;
        float final_sq_sum = 0.0f;
        
        #pragma unroll
        for (int i = 0; i < WARPS_PER_BLOCK; ++i) {
            final_sum += s_partial_sums[i];
            final_sq_sum += s_partial_squares[i];
        }
        
        s_mean = final_sum / n2;
        s_variance = final_sq_sum / n2 - s_mean * s_mean;
    }
    __syncthreads();

    float mean = s_mean;
    float inv_std = rsqrtf(s_variance + 1e-5f);

    // Vectorized output computation where possible
    if (n2 >= 4) {
        float4* output4 = reinterpret_cast<float4*>(output + offset);
        const float4* input4 = reinterpret_cast<const float4*>(input + offset);
        const float4* gamma4 = reinterpret_cast<const float4*>(gamma);
        const float4* beta4 = reinterpret_cast<const float4*>(beta);
        
        for (int i = tid; i < n2/4; i += BLOCK_SIZE) {
            float4 in = input4[i];
            float4 g = gamma4[i];
            float4 b = beta4[i];
            
            float4 out;
            out.x = g.x * ((in.x - mean) * inv_std) + b.x;
            out.y = g.y * ((in.y - mean) * inv_std) + b.y;
            out.z = g.z * ((in.z - mean) * inv_std) + b.z;
            out.w = g.w * ((in.w - mean) * inv_std) + b.w;
            
            output4[i] = out;
        }
        
        // Handle remaining elements
        for (int i = (n2/4)*4 + tid; i < n2; i += BLOCK_SIZE) {
            float normalized = (input[offset + i] - mean) * inv_std;
            output[offset + i] = gamma[i] * normalized + beta[i];
        }
    } else {
        for (int i = tid; i < n2; i += BLOCK_SIZE) {
            float normalized = (input[offset + i] - mean) * inv_std;
            output[offset + i] = gamma[i] * normalized + beta[i];
        }
    }
}

torch::Tensor forward(
    torch::Tensor x,
    torch::Tensor conv_transpose_weight,
    torch::Tensor conv_transpose_bias,
    torch::Tensor sum_weight,
    torch::Tensor norm_weight,
    torch::Tensor norm_bias,
    std::vector<int64_t> stride,
    std::vector<int64_t> padding,
    std::vector<int64_t> output_padding,
    std::vector<int64_t> pool_kernel_size,
    std::vector<int64_t> norm_shape
) {
    x = x.contiguous();
    conv_transpose_weight = conv_transpose_weight.contiguous();
    sum_weight = sum_weight.contiguous();
    norm_weight = norm_weight.contiguous();
    norm_bias = norm_bias.contiguous();

    at::IntArrayRef strideRef(stride);
    at::IntArrayRef paddingRef(padding);
    at::IntArrayRef outputPaddingRef(output_padding);
    at::IntArrayRef poolKernelRef(pool_kernel_size);

    auto out = at::conv_transpose3d(
        x,
        conv_transpose_weight,
        conv_transpose_bias,
        strideRef,
        paddingRef,
        outputPaddingRef,
        1,
        1
    );

    out.add_(sum_weight);

    auto out_size = out.sizes();
    int64_t n1 = 1;
    for (int i = 0; i < out.dim() - norm_shape.size(); ++i) {
        n1 *= out_size[i];
    }
    int64_t n2 = 1;
    for (size_t i = 0; i < norm_shape.size(); ++i) {
        n2 *= norm_shape[i];
    }

    auto output = torch::empty_like(out);
    dim3 grid(n1);
    dim3 block(BLOCK_SIZE);

    selective_atomic_layernorm_kernel<float><<<grid, block>>>(
        out.data_ptr<float>(),
        norm_weight.data_ptr<float>(),
        norm_bias.data_ptr<float>(),
        output.data_ptr<float>(),
        n1,
        n2
    );

    output = at::avg_pool3d(
        output,
        poolKernelRef,
        poolKernelRef,
        {0,0,0},
        false,
        true
    );

    output = at::gelu(output);

    return output;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("forward", &forward, "Selective atomic layer norm forward (CUDA)");
}
Performance Metrics
Metric Value Unit Variance Samples
Executed Ipc Active 2.400 inst/cycle 0.000 5
Executed Ipc Elapsed 2.390 inst/cycle 0.000 5
Issue Slots Busy 60.402 % 0.000 5
Issued Ipc Active 2.420 inst/cycle 0.000 5
SM Busy 60.402 % 0.000 5
Memory Throughput 272651054726.788 byte/second 792422099984409.750 5
Mem Busy 42.480 % 0.000 5
Max Bandwidth 37.870 % 0.000 5
L1/TEX Hit Rate 59.990 % 0.000 5
L2 Hit Rate 50.090 % 0.001 5
Mem Pipes Busy 37.870 % 0.000 5
Warp Cycles Per Issued Instruction 16.250 cycle 0.000 5
Warp Cycles Per Executed Instruction 16.390 cycle 0.000 5
Avg. Active Threads Per Warp 25.970 0.000 5
Avg. Not Predicated Off Threads Per Warp 23.680 0.000 5
Max Active Clusters 0.000 cluster 0.000 5
Max Cluster Size 8.000 block 0.000 5
Overall GPU Occupancy 0.000 % 0.000 5
Cluster Occupancy 0.000 % 0.000 5
Block Limit SM 32.000 block 0.000 5
Block Limit Registers 6.000 block 0.000 5
Block Limit Shared Mem 14.000 block 0.000 5
Block Limit Warps 8.000 block 0.000 5
Theoretical Active Warps per SM 48.000 warp 0.000 5
Theoretical Occupancy 75.000 % 0.000 5
Achieved Occupancy 61.930 % 0.000 5
Achieved Active Warps Per SM 39.640 warp 0.000 5
Analysis Rules
Rule Description
INF HighPipeUtilization ALU is the highest-utilized pipeline (29.9%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized, but should not be a bottleneck.
INF CPIStall Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason.
WRN ThreadDivergence Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration, early thread completion, and divergent flow control can significantly lower the number of active threads in a warp per cycle. This kernel achieves an average of 26.0 threads being active per cycle. This is further reduced to 23.7 threads per warp due to predication. The compiler may use predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread condition code or predicate controls which threads execute the instructions. Try to avoid different execution paths within a warp when possible. In addition, ensure your kernel makes use of Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent conditional block by explicitly calling __syncwarp().
WRN Occupancy This kernel's theoretical occupancy (75.0%) is limited by the number of required registers. The difference between calculated theoretical (75.0%) and measured achieved occupancy (61.9%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy.
Operation / Metric Value Unit
aten::conv_transpose3d
CPU Time 1063748.29 μs
Device Time 2152581.15 μs
Self CPU Time 515.95 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::convolution
CPU Time 1063232.34 μs
Device Time 2152581.15 μs
Self CPU Time 737.73 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::_convolution
CPU Time 1062494.62 μs
Device Time 2152581.15 μs
Self CPU Time 1453.70 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaLaunchKernel
CPU Time 7214944.60 μs
Device Time 27848.25 μs
Self CPU Time 7214944.60 μs
Self Device Time 27848.25 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::add_
CPU Time 1495595.57 μs
Device Time 1622637.87 μs
Self CPU Time 3620.22 μs
Self Device Time 1622637.87 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
void selective_atomic_layernorm_kernel<float>(float const*, float const*, float const*, float*, int, int)
CPU Time 0.00 μs
Device Time 6476701.02 μs
Self CPU Time 0.00 μs
Self Device Time 6476701.02 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
aten::avg_pool3d
CPU Time 5137058.46 μs
Device Time 666289.23 μs
Self CPU Time 2689.34 μs
Self Device Time 666289.23 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
cudaDeviceSynchronize
CPU Time 2913113.36 μs
Device Time 0.00 μs
Self CPU Time 2913113.36 μs
Self Device Time 0.00 μs
CPU Memory Usage 0 B
Device Memory Usage 0 B
Self CPU Memory Usage 0 B
Self Device Memory Usage 0 B
Status: Completed
45297 warnings generated when compiling for host.
Suppressed 45331 warnings (45284 in non-user code, 47 NOLINT).
Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:12:5 bugprone-easily-swappable-parameters
12 | const T* __restrict__ input,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
13 | const T* __restrict__ gamma,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:12:27: note: the first parameter in the range is 'input'
12 | const T* __restrict__ input,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:13:27: note: the last parameter in the range is 'gamma'
13 | const T* __restrict__ gamma,
| ^~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:23:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
23 | const int tid = threadIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:26:21: warning: narrowing conversion from 'unsigned int' to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
26 | const int bid = blockIdx.x;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:93:30: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
93 | s_mean = final_sum / n2;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:94:37: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-conversions]
94 | s_variance = final_sq_sum / n2 - s_mean * s_mean;
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:138:5: warning: 2 adjacent parameters of 'forward' of similar type ('torch::Tensor') are easily swapped by mistake [bugprone-easily-swappable-parameters]
138 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
139 | torch::Tensor sum_weight,
| ~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:138:19: note: the first parameter in the range is 'conv_transpose_bias'
138 | torch::Tensor conv_transpose_bias,
| ^~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:139:19: note: the last parameter in the range is 'sum_weight'
139 | torch::Tensor sum_weight,
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:142:5: warning: 5 adjacent parameters of 'forward' of similar type ('std::vector<int64_t>') are easily swapped by mistake [bugprone-easily-swappable-parameters]
142 | std::vector<int64_t> stride,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
143 | std::vector<int64_t> padding,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
144 | std::vector<int64_t> output_padding,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145 | std::vector<int64_t> pool_kernel_size,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
146 | std::vector<int64_t> norm_shape
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:142:26: note: the first parameter in the range is 'stride'
142 | std::vector<int64_t> stride,
| ^~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:146:26: note: the last parameter in the range is 'norm_shape'
146 | std::vector<int64_t> norm_shape
| ^~~~~~~~~~
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:142:26: warning: the parameter 'stride' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
142 | std::vector<int64_t> stride,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:143:26: warning: the parameter 'padding' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
143 | std::vector<int64_t> padding,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:144:26: warning: the parameter 'output_padding' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
144 | std::vector<int64_t> output_padding,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:145:26: warning: the parameter 'pool_kernel_size' is copied for each invocation but only used as a const reference; consider making it a const reference [performance-unnecessary-value-param]
145 | std::vector<int64_t> pool_kernel_size,
| ^
| const &
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:191:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
191 | n1,
| ^
/home/robert_sakana_ai/llm_cuda/experiments/20250203_optimize_b10_s4_e0_sweep/level_2/task_3/b9_s3_selective_atomic_norm_base/base/base.cu:192:9: warning: narrowing conversion from 'int64_t' (aka 'long') to signed type 'int' is implementation-defined [bugprone-narrowing-conversions]
192 | n2
| ^