44_ConvTranspose2d_Multiply_GlobalAvgPool_GlobalAvgPool_Mean
• modular_shared_warp_mean_base_base
import torch
import torch.nn as nn
import torch.nn.functional as F
def module_fn(
x: torch.Tensor,
stride: int,
padding: int,
output_padding: int,
conv_transpose: torch.Tensor,
conv_transpose_bias: torch.Tensor,
multiplier: float,
) -> torch.Tensor:
"""
Applies transposed convolution, scalar multiplication, and multiple global average pooling operations.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, in_channels, height, width)
stride (int): Stride of the transposed convolution
padding (int): Padding of the transposed convolution
output_padding (int): Additional size added to output shape
conv_transpose (torch.Tensor): Transposed convolution weight tensor
conv_transpose_bias (torch.Tensor): Bias tensor for transposed convolution
multiplier (float): Scalar multiplier value
Returns:
torch.Tensor: Scalar output after applying operations
"""
x = F.conv_transpose2d(
x,
conv_transpose,
bias=conv_transpose_bias,
stride=stride,
padding=padding,
output_padding=output_padding,
)
x = x * multiplier
x = torch.mean(x, dim=[2, 3], keepdim=True)
x = torch.mean(x, dim=[2, 3], keepdim=True)
x = torch.mean(x)
return x
class Model(nn.Module):
"""
Model that performs a transposed convolution, multiplies by a scalar, applies global average pooling,
another global average pooling, and then calculates the mean.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
multiplier,
):
super(Model, self).__init__()
conv = nn.ConvTranspose2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
output_padding=output_padding,
)
self.conv_transpose_parameter = nn.Parameter(conv.weight)
self.conv_transpose_bias = nn.Parameter(
conv.bias
+ torch.randn(
conv.bias.shape, device=conv.bias.device, dtype=conv.bias.dtype
)
* 0.02
)
self.multiplier = multiplier
def forward(self, x, stride, padding, output_padding, fn=module_fn):
return fn(
x,
stride,
padding,
output_padding,
self.conv_transpose_parameter,
self.conv_transpose_bias,
self.multiplier,
)
batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
multiplier = 0.5
def get_inputs():
return [
torch.randn(batch_size, in_channels, height, width),
stride,
padding,
output_padding,
]
def get_init_inputs():
return [
in_channels,
out_channels,
kernel_size,
stride,
padding,
output_padding,
multiplier,
]
import torch
import torch.nn as nn
class Model(nn.Module):
"""
Model that performs a transposed convolution, multiplies by a scalar, applies global average pooling,
another global average pooling, and then calculates the mean.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding, multiplier):
super(Model, self).__init__()
self.conv_transpose = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, output_padding=output_padding)
self.conv_transpose.bias = nn.Parameter(self.conv_transpose.bias + torch.randn(self.conv_transpose.bias.shape, device=self.conv_transpose.bias.device, dtype=self.conv_transpose.bias.dtype) * 0.02)
self.multiplier = multiplier
def forward(self, x):
x = self.conv_transpose(x)
x = x * self.multiplier
x = torch.mean(x, dim=[2, 3], keepdim=True) # First global average pooling
x = torch.mean(x, dim=[2, 3], keepdim=True) # Second global average pooling
x = torch.mean(x)
return x
batch_size = 128
in_channels = 3
out_channels = 16
height, width = 32, 32
kernel_size = 3
stride = 2
padding = 1
output_padding = 1
multiplier = 0.5
def get_inputs():
return [torch.randn(batch_size, in_channels, height, width)]
def get_init_inputs():
return [in_channels, out_channels, kernel_size, stride, padding, output_padding, multiplier]
#include <torch/extension.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
// Warp-level reduction using shuffle instructions
__device__ __forceinline__ float warpReduceSum(float val) {
#pragma unroll
for (int offset = 16; offset > 0; offset /= 2)
val += __shfl_down_sync(0xffffffff, val, offset);
return val;
}
// Block-level reduction using shared memory
template<unsigned int blockSize>
__device__ __forceinline__ float blockReduceSum(float val, float* shared) {
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;
// Warp reduction first
val = warpReduceSum(val);
// Write reduced warp values to shared memory
if (lane == 0) shared[wid] = val;
__syncthreads();
// Final warp reduces all other warp results
if (wid == 0) {
val = (threadIdx.x < blockSize / warpSize) ? shared[lane] : 0.0f;
val = warpReduceSum(val);
}
return val;
}
// Global memory load with grid stride loop
template<typename T>
__device__ __forceinline__ float computeLocalSum(
const T* input,
const int offset,
const int num_elements,
const int thread_stride
) {
float sum = 0.0f;
for (int idx = threadIdx.x; idx < num_elements; idx += thread_stride) {
sum += static_cast<float>(input[offset + idx]);
}
return sum;
}
template <unsigned int blockSize>
__global__ void modular_mean_kernel(
const float* __restrict__ input,
float* __restrict__ output,
const int H,
const int W,
const int C
) {
extern __shared__ float shared[];
const int num_elements = H * W;
const int batch_idx = blockIdx.x / C;
const int channel_idx = blockIdx.x % C;
const int input_offset = (batch_idx * C + channel_idx) * num_elements;
// Load and sum values from global memory
float sum = computeLocalSum<float>(
input,
input_offset,
num_elements,
blockSize
);
// Perform block reduction
sum = blockReduceSum<blockSize>(sum, shared);
// Write result
if (threadIdx.x == 0) {
output[blockIdx.x] = sum / static_cast<float>(num_elements);
}
}
at::Tensor module_fn(
at::Tensor x,
int64_t stride,
int64_t padding,
int64_t output_padding,
at::Tensor conv_transpose,
at::Tensor conv_transpose_bias,
double multiplier
) {
at::Tensor y = at::conv_transpose2d(
x,
conv_transpose,
conv_transpose_bias,
{stride, stride},
{padding, padding},
{output_padding, output_padding},
1,
{1, 1}
);
y = y * multiplier;
auto dims = y.sizes();
int N = dims[0];
int C = dims[1];
int H = dims[2];
int W = dims[3];
auto options = torch::TensorOptions().device(y.device()).dtype(y.dtype());
auto temp = torch::empty({N * C}, options);
constexpr int blockSize = 256;
const int numBlocks = N * C;
const size_t sharedMemSize = (blockSize / 32) * sizeof(float);
modular_mean_kernel<blockSize><<<numBlocks, blockSize, sharedMemSize>>>(
y.data_ptr<float>(),
temp.data_ptr<float>(),
H, W, C
);
return temp.mean();
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &module_fn, "Module function");
}
Metric | Value | Unit | Variance | Samples |
---|---|---|---|---|
Executed Ipc Active | 0.840 | inst/cycle | 0.000 | 5 |
Executed Ipc Elapsed | 0.668 | inst/cycle | 0.000 | 5 |
Issue Slots Busy | 21.098 | % | 0.111 | 5 |
Issued Ipc Active | 0.844 | inst/cycle | 0.000 | 5 |
SM Busy | 21.098 | % | 0.111 | 5 |
Memory Throughput | 2364552373312.274 | byte/second | 4066705649370971242496.000 | 5 |
Mem Busy | 39.830 | % | 1.129 | 5 |
Max Bandwidth | 70.654 | % | 3.400 | 5 |
L1/TEX Hit Rate | 0.024 | % | 0.000 | 5 |
L2 Hit Rate | 2.956 | % | 0.000 | 5 |
Mem Pipes Busy | 12.734 | % | 0.112 | 5 |
Warp Cycles Per Issued Instruction | 61.234 | cycle | 0.024 | 5 |
Warp Cycles Per Executed Instruction | 61.582 | cycle | 0.025 | 5 |
Avg. Active Threads Per Warp | 31.780 | 0.000 | 5 | |
Avg. Not Predicated Off Threads Per Warp | 27.840 | 0.000 | 5 | |
Max Active Clusters | 0.000 | cluster | 0.000 | 5 |
Max Cluster Size | 8.000 | block | 0.000 | 5 |
Overall GPU Occupancy | 0.000 | % | 0.000 | 5 |
Cluster Occupancy | 0.000 | % | 0.000 | 5 |
Block Limit SM | 32.000 | block | 0.000 | 5 |
Block Limit Registers | 8.000 | block | 0.000 | 5 |
Block Limit Shared Mem | 28.000 | block | 0.000 | 5 |
Block Limit Warps | 8.000 | block | 0.000 | 5 |
Theoretical Active Warps per SM | 64.000 | warp | 0.000 | 5 |
Theoretical Occupancy | 100.000 | % | 0.000 | 5 |
Achieved Occupancy | 81.802 | % | 0.099 | 5 |
Achieved Active Warps Per SM | 52.352 | warp | 0.040 | 5 |
Rule | Description |
---|---|
WRN HighPipeUtilization | All compute pipelines are under-utilized. Either this kernel is very small or it doesn't issue enough warps per scheduler. Check the Launch Statistics and Scheduler Statistics sections for further details. |
INF CPIStall | Check the Warp Stall Sampling (All Cycles) table for the top stall locations in your source based on sampling data. The Kernel Profiling Guide (https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics-reference) provides more details on each stall reason. |
WRN Occupancy | This kernel's theoretical occupancy is not impacted by any block limit. The difference between calculated theoretical (100.0%) and measured achieved occupancy (81.4%) can be the result of warp scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide (https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#occupancy) for more details on optimizing occupancy. |
Operation / Metric | Value | Unit |
---|---|---|
aten::conv_transpose2d | ||
CPU Time | 2807328.93 | μs |
Device Time | 1936752.52 | μs |
Self CPU Time | 24664.31 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::convolution | ||
CPU Time | 2782664.63 | μs |
Device Time | 1936752.52 | μs |
Self CPU Time | 32052.84 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::_convolution | ||
CPU Time | 2750611.79 | μs |
Device Time | 1936752.52 | μs |
Self CPU Time | 65649.03 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::cudnn_convolution_transpose | ||
CPU Time | 1909827.91 | μs |
Device Time | 1563725.31 | μs |
Self CPU Time | 454415.94 | μs |
Self Device Time | 1563725.31 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
cudaLaunchKernel | ||
CPU Time | 1265364.59 | μs |
Device Time | 24157.48 | μs |
Self CPU Time | 1265364.59 | μs |
Self Device Time | 24157.48 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
aten::zero_ | ||
CPU Time | 106851.21 | μs |
Device Time | 944930.88 | μs |
Self CPU Time | 26441.15 | μs |
Self Device Time | 0.00 | μs |
CPU Memory Usage | 0 | B |
Device Memory Usage | 0 | B |
Self CPU Memory Usage | 0 | B |
Self Device Memory Usage | 0 | B |
45294 warnings generated when compiling for host. Suppressed 45327 warnings (45280 in non-user code, 47 NOLINT). Use -header-filter=.* to display errors from all non-system headers. Use -system-headers to display errors from system headers as well.